

仪器学院

郎贤礼 整理

TracePro 主要内容

- 光源的建立方法
- 各种参数的设定
- 分析功能的使用
- 档案转换
- 模拟步骤
- 准确模拟
- 分析功能
- 提高运算速度
- 应用实例

光学计算软件的计算方法

Ray Tracing

Sequential Ray Tracing

OSLO, Zemax, CodeV…

Non-Sequential Ray Tracing

TracePro, ASAP, LightTools...

BPM (Beam Propagation Method), FDTD

□ 光波导, DWDM等

□ BPM_CAD, WDM_Phasar...

光学计算软件的计算方法

- Sequential Ray Tracing(序列光线追迹)
 - □ OSLO 属于序列描光
 - □ 以光学面建立模型
 - □ 单一光源或者对多光源的设置受到局限
 - □ 需要设计者指定光学面的计算顺序
 - 口各个光学表面仅计算一次(反射、折射、散射)
 - □ 计算速度快
 - 口可以进行优化和公差分析
 - □ 主要应用
 - 成像设计、透镜,镜头设计

光学计算软件的计算方法

- Non-Sequential Ray Tracing(非序列光线追迹)
 - □ TracePro 属于非序列描光
 - □以实体对象构建光路系统
 - 口光线与实体表面的作用顺序不需设计者指定
 - 光线与实体表面的作用可以同时计算反射、折射、散射、吸收、衍射等行为
 - □ 需要足够多的光线数量以更接近真实的情况
 - □ 计算速度比较慢
 - 口不易做自动优化和公差分析
 - □ 主要应用
 - 照明设计、杂散光分析

TracePro 软件简介

- 美国Lambda Research公司产品
- 一套符合工业标准的ACIS固体模型绘图软件做发展的光机软件;
- 广泛引用于镜头杂散光分析,背光板设计,LED 照明,灯具设计,车灯,投影显示器,扫描仪,医 疗仪器等领域

TracePro 软件简介

■ 目前版本4.0

- □包含主程序以及与其它CAD软件的档案转换工具
- □ 主程序包含RC, LC, Standard, Expert四个版本
- □可以对真实场景(Photo realistic)进行计算 和显示
- □具有众多的国内外用户群

- CPU: Pentium4 2.0GHz
- □系统: Windows2000/XP/Vista
- □内存: 512MB (2GB)
- □ 虚拟内存: 2GB
- □硬盘空间: 450MB
- □显卡:分辨率1208*1024
- □显存: 64MB以上, 支持OpenGL

■ 对计算机内存、虚拟内存的要求较高

□增加物理内存和虚拟内存的数量

□在进度大量光线计算时不要运行其它软件

常规 ↓ 要进行⊅	计算机名 硬件 盾 大多数改动,您必须作	∞∞ 系统还原 目动更新 :为管理员登录。	远程 	<u>? ×</u>
一性能一视觉效	2果,处理器计划,内存 1月10日 左	字使用,以及虚拟内存 	 视觉效果 高级 数据执行保护 处理器计划 登(2) 数认错况下,计算机设置为用较多的处理器时间来运行 您的程序。 2) √ 地球以升化性能。 	Ī
与您	驱动器 [卷标] (1) C: [1_1_SYS] D: [1_1_APP] E: [1_3_VSER] F: [2nd_3206]	页面文件大小(MB) 1000 - 2000	注 日本の市日日前: 注 程序(2) ○ 后台服务(2) 百存使用 以情况下,计算机设置为用较多的内存来运行您的税	
⊤启动 系	G: [WD3000-3rd] 0: [VSB-HD] 所选驱动器的页面3 驱动器: 可用空间:	C件大小 D: [1_1_APP] 5253 MB	F。 調整以优化性能: 注程序 图	
	 ⑥ 自定义大小(C): 初始大小(MB)(C): 最大值(MB)(X): ⑥ 系统管理的大小 	1000 2000	拟内存 面文件存在于硬盘上,Windows 将它作为内存来使 。 有驱动器页面文件大小的总数: 1000 MB	
	 ○ 无分页文件 (图) 所有驱动器页面文件 允许的最小值: 	设: 大小的总数 2 MB		
	推存: 当前已分配:	1534 MB 1000 MB	<u>确定</u> 取消 <u>应用</u>	A (<u>A</u>)

■ 菜单 → Help → About 查看TracePro版本

ACIS Version

□第一套使用ACIS核心的软件

□ 可以顺畅的与其它造型软件进行文件的相互转换

- 打开安装目录下面的EllipticalReflector.oml文件
- 在主界面中从不同角度观察模型,Zoom
- 使用各种渲染方式显示模型
 - Render
 - U Wireframe

■ 数据库设定

- □ TracePro 中表面(镀膜、散射、网点等)、实体(材 质、偏振、荧光等)特性都被存在统一的数据库中。
- □该数据库也保存了所有用户自定义材质等信息

- 数据库设定
 - □ 设定TracePro数据库TracePro.mdb路径
 - View>>Customize...
 - OML文件仅包含 光路系统的部分信息, 如果共享资料需要将 材质等参数导出成文 本文件。
 - Tools → Database → Export (F12)将材 料保存成Excel格式 文件

Data Directory: Browse Auto load scheme: Browse Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver © Display all objects © Windows GDI © Display visible objects © OpenGL Background Colors Object/Surface Colors Model Window: Up Down System Tree: Default color: Evaluator dialog controls: Image: Colors	Data Directory: Browse Auto load scheme: Browse Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver Display all objects Display visible objects OpenGL Background Colors Model Window: Up Down System Tree: Evaluator dialog controls: OK Cancel	Properties Database:	/uXing\Work\Output\TracePro\TracePro.mdb	Browse
Auto load scheme: Browse Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver O Display all objects O Windows GDI O Display visible objects Object/Surface Colors Model Window: Up Down Default color: System Tree: Highlight color:	Auto load scheme: Browse Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver © Display all objects © Windows GDI © Display visible objects © OpenGL Background Colors Model Window: Up System Tree: Default color: Evaluator dialog controls: OK Cancel OK	Data Directory:		Browse
Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver O bisplay all objects O Windows GDI O bisplay visible objects O penGL Background Colors Down System Tree: Default color: Evaluator dialog controls: Highlight color:	Place System Tree on left side of Model Window On starting TracePro don't open any Model Window On opening models Graphic display driver © Display all objects © Windows GDI © Display visible objects © OpenGL Background Colors Object/Surface Colors Model Window: Up System Tree: Default color: Evaluator dialog controls: OK	Auto load scheme:		Browse
On starting TracePro don't open any Model Window On opening models Graphic display driver O Display all objects O Windows GDI Display visible objects O OpenGL Background Colors Object/Surface Colors Model Window: Up System Tree: Default color: Evaluator dialog controls: Highlight color:	On starting TracePro don't open any Model Window On opening models Graphic display driver Display all objects Windows GDI OpenGL Background Colors Model Window: Up Down System Tree: Evaluator dialog controls: OK Cancel	Place System Tree on	left side of Model Window	
On opening models Graphic display driver Image: Display all objects Image: Windows GDI Image: Display visible objects Image: Windows GDI Image: Display visible objects Image: Display visible objects Image: Display visible objects Image: Display visib	On opening models Graphic display driver Image: Construction of the system o	On starting TracePro	don't open any Model Window	
	OK Cancel	 On opening models Display all objects Display visible objects Background Colors Model Window: Up System Tree 	Graphic display driver Ena Windows GDI DenGL OpenGL Object/Surface G Down Default color: ee: Highlight color:	able Spaceball

软件设定

■ Tracepro 设定

□系统单位 View/Preference

- 单位:从其它CAD软件倒入时单位要一致
- Ray Colors 光线颜色设定
 - □用红、绿、蓝表示长波-短波
 - 单一波长模拟时:代表光线Flux,假设出射光线Flux为1,经过一些 表面反射、衍射后Flux会降低;
 - 多波长模拟时:代表波长的长波、短波
 - Demo/Color/SF6Prisim 示例

□ 用实际颜色表示光线 的真实波长(红外、紫外部 分用黑色表示)

Preferences	_	
General Zoom	View Option:	5
Ray Colors	Ray Display	
-Polychromatic Raytrace-		
O Display rays from a contract of the second sec	ed t	
Uong wavelength t	short	
C Display rays by co	or of wave	
(IR and UV are dis	layed in	
C Display rays in b		R. Z. T. T.
Apply		Test Chiversity of Technolog

TracePro 模拟步骤

- TracePro 直接建立
- CAD文件转换或者利用Solidworks Bridge
 - TracePro 与Solidworks搭配很好,可以在Solidworks做 所有的建模、光学特性设定,只需在Solidworks中调用 TracePro的描光功能即可。
 - □利用CAD软件,如Solidworks, Pro/E, Catia, UG等建立 三维实体模型后导入TracePro
- 光学设计软件
 - □可以读取Zemax, OSLO, CodeV的镜头文件。
 - □ 导入光学部分,加入机构、光源
- 用宏语言Scheme语言进行
 - □ 最早由MIT开发,属于Lisp语言,功能强大,比较复杂

■ 信息栏

- □ 鼠标在窗口移动,信息栏右侧部分显示当前位置
- □ 鼠标左键单击,信息栏中间部分显示单击位置的坐标

■ Insert菜单

- □透镜
- □ 菲涅耳透镜
- □反射镜
- □ 遮光板
- □ 导光管
- □ 基本实体
- □ 文件中的部件

- Insert/Lens Element...
 - □插入透镜实体
 - □ Conic: 二次曲面系数 z = cv·r²/(1+√1-cv(cc+1)r²)
 cc=0: 球面 cc=-1: 抛物面

 - cc<-1 双曲面 -1<cc<0: 椭球面
 - □ Obstruction: 透镜是中间带孔
 - □ Aspheric: 非球面系数

■ 选择实体

- □ 在Object Tree选中
- □点击选择实体按钮区区后直接用鼠标选择实体
- 修改实体
 - □选中实体后, Modify

Insert Lens Element	
Lens Aperture Obstr	ruction Position Aspheric
Name: Lens 1	
Units Radius 💌	hickness: <mark>5</mark>
-Material	
atalog: SCHOTT 💌	Name: BK7 💌
-Surface 1	Surface 2
Cylindric	Cylindric
Radius: <mark>50</mark>	Radius: <mark>50</mark>
Conic: <mark>O</mark>	Conic: <mark>O</mark>
Insert Lens	Modify Lens

■ 模型建立方式的区别

- □ TracePro内建模型计算最快
- □其它CAD文件导入模型的计算比较慢
- 例如: 球面的建模方式不同
 - □ TracePro内建的球面是通过球面半径、球心等参数建立
 - □ 其它CAD软件导入文件的球面则可能是很多点描述的球 面
 - 在计算光线与球面的反射、折射、散射等行为时不同建模方式需要的计算量区别很大。

- 反光杯建模Insert/Reflector...
 - □ Conic 二次曲面型
 - □ 3D Compound 复合反射表面
 - □ Trough 水槽型(二次曲线沿垂直线Sweep得到)
 - □ Rectangular Concentrator 方形反射面
 - □ Facetted Rim Ray 多面体反射面
- ■每个参数的具体含义可以通过及时帮助 31 查询

3D Compound

Insert Reflector	
Rectangular Concentrator	Facetted Rim Ray
Compound Trou Conic 3D Compound	gh Trough (Cylinder)
Name: 3D Compound Re	flector 1
Shape: Parabolic	•
Front length: 30 Thio	kness: 2
Back length: <mark>5</mark> Axis	s tilt: <mark>O</mark>
Lateral focal <mark>20</mark>	
Foci	
Focal 20	N/A 🛛
Origin Rot	ation
X: O	X: O
Y: 0	Y: 0
Z: <mark>O</mark>	Z: O
	in Degrees
<u>I</u> nsert !	lodify

■ Trough(水槽型)

Facetted Rim Ray

多面体反射面:指定光源位置、大小及目标位置、 大小,可以自动生成多面体反射面

insert Reflector	
Compound	Trough
Conic 3D Compound	Trough (Cylinder)
Rectangular Concentrator	Facetted Rim Ray
Name: Rim Ray Re	eflector 1
Shape: Circular 💌	Thickness: 1
Location and Height are from reflector	# 16 Length: 0
Package Data (defines sta Height: 20	rting point for outer facet
-Source and Target Data	ocation: 0 ocation: 0
-Origin X: 0 Y: 0 Z: 0	Rotation X: 0 Y: 0 Z: 0 in Degrees
Insert	Modify

■ Baffle Vane 遮光板

■ Primitive Solid 基本形状

- Block
- Cylinder/Cone
- Torus
- Sphere
- Thin Sheet

Thin Sheet

□用于建立截面形状较复杂的实体模型

□通过Sweep、Revolve形成实体

□ 建立时每个端点要按顺时针或逆时针顺序依次输入

Insert Prim	nitive Solids			· · · · /
Block Cyl	inder/Cone 🛛 T	orus Sphere 7	Thin Sheet	/
Name: Thi	in Sheet 1			/
X Point	Y Point	Z Point		
-2	-2	0.0		/
-5	10	0		
-7	10	0		
-12	-2	0		
			_	
,			·	
(C)	Insert	<u>C</u> lear Grid		
				/ 4

3

■ Sweep 由Surface沿指定方向扫出实体

Sweep Surface Selection					
Distance 2					
Draft angle 30	in Degrees				
Sweep along surface	e normal				
O User sweep directio	n				
X direction	(Surface normal				
Y direction	and draft angle are for planar				
Z direction 0	surfaces only)				
Apply					

■ Revolve Surface绕指定轴旋转形成模型

Revolve Surface Selection					
Angle 60 (planar surfaces only)					
Draft angle -5 in Degrees					
Radius 10					
Steps 0					
Position on axis of revolution					
Position X 0 Axis X 1					
Position Y -5 Axis Y 0					
Position Z 2 Axis Z 0					
(position must be in the Plane of the surface)					
Get Position from last mouse click					
Calculate a Position using selected surface					
Revolve Surface					

建立模型

■ 布尔运算 🔍 🕬

- □ 只针对Object而不能用在Surface上面
- □ 首先选择一个实体,按住Ctrl同时选中另外一个
- □ Unite: 实体相加
- □ Abstract: 实体相减:选择被减实体、再选择减除实体
- □ Intersect: 实体交集

建立模型

- 对实体的移动和转动 菜单Edit/Object
 - □ Translate 自由拖动(不准确)
 - Move
 - Rotate
 - Scale
 - Orientation

Move Selection	
Relative O Absolute O Distance Apply]
X Center 0 Copy	1
Y Center 0	
Z Center 0	

Rotation Angle Apply in Degrees Copy Axis: About X X Direction 1	Rotate Selection		
Y Direction 0 Y Center 0 object is selected and the Axis and Origin controls are accessed.	Rotation Angle Image: Image of the second	Rotation Center Point Origin of Object WCS X Center 0 Y Center 0 Z Center 0	Apply Copy The WCS data is retained until a new object is selected and the Axis and Origin controls are accessed.

CAD转档

IGES, STEP, SAT, STL, Translator

- □由于TracePro采用ACIS核心,因此对SAT文件支持最为 完善
- □可以直接读取SAT文件不需要转换。
- □ CAD软件导入TracePro时不能保存材料特性,在CAD软件中修改之后只有SAT文件可以保存材料属性信息。
- CATIA, Pro/E Reader & Writer
- Solidworks Bridge
 - □ 安装后可以在Solidworks下建立模型、定义材质特性、 建立光源等操作;调用TracePro进行描光和分析。
- Healing 利用Healing修正模型错误,破面修补

SAT文件格式

- 在TracePro定义的模型的属性(Properties),用 其它ACIS-Based 建模软件打开档案,其属性仍然 存在;用建模软件修改模型后,再用TracePro打 开Properties不变
- 可以存储在SAT文件中的属性包括
 - Material Properties
 - Surface Properties
 - Surface Source Parameters
 - Importance Sampling Targets
 - Prescription Data
 - Object and Surface Names
 - Exit Surface for Simulation mode
- SAT不能存储Analysis菜单中定义的参数

导入镜头设计软件的文件

- Insert Lens Design Software data

 - Zemax
 - CodeV

 - Sigma2000
- File/Open直接打开相应文件

TracePro空间距离的测量

Tools/Measure...

Measure		_ 🗆 🗙
Measurement type:	Vertex - Edge Vertex - Vertex	_
Vertex Selected - in (160.000000 48.555 Edge Selected - in m Begin -160.000000 End -160.000000 4	Vertex - Edge Vertex - Surface Edge - Edge Edge - Surface Surface - Surface	
Please select a verte		

定义光学特性

- Apply Properties
 - Material
 - Surface properties
- 材质新增、修改、
 光学特性的编辑

Apply Properties	
Importance Sampling Exit Surface Diffraction Raytrace Flag Mueller Matrix Gradient Index Bulk Scatter Temperature	
Class and User Data	RepTile
Temperature Distribution	Fluorescence
Material Surface Surface Source	Prescription Color
Catalog: SCHOTT	
Name: None>	
Display of index and absorptance for given wavelength	
Wavelength: 0.5461 um	
Index: 1 Absorption 0	
ansmission 0 through 10 mm	
The wavelengths used during the Raytrace are set using the Raytrace Options dialog	
Current Material on selected Object	
None> from: (None>	
If (None) is displayed. Check the TracePro Database	
Apply View Data	

- Add可以增加波长、温度点
- 对于列表中没有的波长、温度点,TracePro采用 线性内插方式计算
- 对于列表范围以外的波长、温度点, TracePro 采用最近一点的值
- 点储存将新建立的材料储存

定义光学特性

■ 材质新增、修改 □ 也可以通过材料拟合公式的方式输入折射率公式系数

Material Property Ed	itor		
	🗏 🗄 🗄	1	
Catalog-	Catalog:	UserDefine Name: Material1	
Add Catalog	Description:		
Delete Catalog			
Add Property			
Delete Property			
Copy Property	$N^{2}(\lambda) = a_{1} + a_{2}\lambda^{2} + \frac{a_{3}}{\lambda^{2}} + \frac{a_{4}}{\lambda^{4}} + \frac{a_{5}}{\lambda^{6}} + \frac{a_{6}}{\lambda^{8}}$		
	Today Cooff	Teday	
– Data Points –			
Sort by			
	a2	0	
<u>Aaa</u>	a3	0	
Delete	a4	0	
	a5	0	
	a6	0	
	Index Dispers	sion Formula Absorption Table	

- 在Object Tree选择需要 设定的Surface
- 在Properties里面选择
 Surface页面

Apply Properties	
Importance Sampling E Mueller Matrix Gradi Class and User Temperature Distr Material Surface	xit Surface Diffraction Raytrace Flag ient Index Bulk Scatter Temperature Data RepTile ribution Fluorescence Surface Source Prescription Color
atalog: Name: ≥scription: Scatter: No Scatte General Data Type: Stack, no pola	Default Default MgF2 Single Layer AR GaAs Ge IR Gold Lens MgF2 Single Layer AR Mg0 Mirror Perfect Absorber Perfect Mirror_180 deg PhaseRefl Perfect Transmitter
	Apply View Data

■ 设定散射模型

BSDF (Bidirectional Scattering Distribution Function)

BRDF(BTDF) Bidirectional Reflectance (Transmittance) Distribution Function

nter New Surface Property 🛛 🔀
Surface Property Name:
Adding to Catalog: Default
Scatter Model: ≺None> Temperatu Elliptical ABg Wavelength Table BSDF Asymmetric Table BSDF
OK Cancel

where a = absorptance

- R_s = specular reflectance
- T_s = specular transmittance
- R_{TS} = TS for reflection

T_{TS} = TS for transmission.

□ Retroreflector: 棱镜反射器

□ Polorization: 偏振

- Fluorescence: 荧光粉特性
- Prescription: 光线与Surface的作用顺序,用于Auto Importance Sample
- RepTile: 设定网点
- Mueller Matrix: 定义偏振器件, Polarizers, Wave Plates
- Bulk Scatter: 体散射特性(如大气散射,生物医学 检测等)
- Color: 设定模型颜色,透明度等
- Temperature: 设定温度特性
- Gradient Index: 渐变折射率材料

- 主要用于Back Light
- 首先建立导光板
- 编辑面属性中的RepTile
- 网点位置处表面属性
- Boundary Up:
 边界Y方向矢量方向

Apply Properties	×
Importance Sampling Exit Surface Diffraction Raytrace Fi Material Surface Surface Source Prescription Colo	lag r
Temperature Distribution Fluorescence	
Mueller Matrix Gradient Index Bulk Scatter Temperatu	re
Class and oser bata Reprint	
iatalog: Default	
Name: Demo1	
Sphere	
Surface Default	
Surface Mirror	
-Boundary and Orientation	
Rectangula Vidth: 8 feight: 8	
Boundary Centergin for tile (0,0) Tile Up Boundary Up	
X: 0 X: 0 X: 1 X: 1	
Y: -0.5 Y: -0.5 Y: 0 Y: 0	
Z: 0 Z: 0 Z: 0 Z: 0	
Export Apply View Data	

RepTile定义网点

- 在RepTile属性对话框中点击View Data进入网点属 性设置界面
- 新建Property
 - □ Bump(凸起),Hole(凹陷)
- 网点形状
 - □ Fernel、Cone、Sphere、Prism…
- 网点分布形状
 - □ Ring、Rectangle、Hexagonal...
- 网点分布参数
 - Constant, Variable Rows, Parameterized

nter New RepTile Property	×
RepTile Property Name:	
Demo1	
Adding to Catalog: Default	
Geometry Type: Sphere	•
Tile Type: Rectangles	-
Variation Type: Constant	•
OK Cancel	

RepTile定义网点	RepTile Property Editor
	Catalog Catalog: Default Name: Demo2
■ 网点距离参数	Delete Catalog RepTile Type Add Property Geometry Type: Sphere Delete Property Width: 0.5+jCol*0.02
□ iRow 行编号变量	Copy Property Tile Type: Rectangles Height: 0.5+iRow*0.02 Data Points Variation Type: Parameterized
□ jCol: 列编号变量	Insert Radius (mm) Depth/Height (mm) Decenter x (mm) Decenter y (mm) Delete 0.1 0 0
Parameter Expressions	
o Tile Property Editor	
log Catalog: Refault Vame: Sphere Reptile	Table
Id Catalog Description:	
lete Catalog RepTile Type	
H Property Geometry Type: Sphere Ring Width: =.075"Ring+.1	
lete Property Tile Type: Rings Seg Width: 36	
py Property Variation Type: Parameterized Start Angle: 0 # of	Segments: 12
Points	
Insert	
Radus (mm) Depth/Height (mm) Decenter r (mm) Decenter phi (de	9)
Delete =.02*'iRing+.00001 .1 =.002*'iRing*iRing 0	
	-

RepTile定义网点

■ 网点距离参数

Tile Type	Input Field	Associated Variable Names
Ring	Ring Width	iRing
	Seg. Width	IRing, jAzi
	Start Angle	IRing
	# of Segments	iRing
Rectangles	Width	jCol
	Height	iRow
Staggered Rectangles	Width	jCol
	Height	iRow
	Row Offset	iRow

其它参数参考TracePro用户手册

Surface Properties – Thin Stack 膜层

■ 1. 建立膜层

Define/Edit property data/Thin Stack

□ 输入膜层具体参数

	<			
Thin Film Stack Edit	or			
		•		
Catalog	Catalog: Defau	ult	•	Name: 3 Layer AR
Add Catalog	Description: Three	Laver Anti-reflectio	n for 500nm on B	K7
Delete Catalog				
Add Property				
Delete Property				
- B B B B B B B B B B B B B B B B B B B	Thickness (um)	Material Catalog	Material Name	
Copy Property	INCIDENT MEDIA			
Data Dainta	0.0912	Coating	MgF2	
	0.125	Coating	ZrO2	
Insert	0.0769	Coating	Al2O3	
1119905	SUBSTRATE			
Delete				
	Table			

Surface Properties – Thin Stack 膜层

- 2. 建立Surface Property 加入刚刚建立的膜层名称 在Type列表中选择Stack
- 3. 在设定面参数时可以使用刚刚加入的Surface Property

Surface Property Edit	itor	IX
Catalog 📥	Catalog: Default 💌 Name: aaa	
Add Catalog	Description	
Delete Catalog		
Add Property	Type: Stack Scatter: None L Retroreflector	
Delete Property	Catalog: Default Stack: Cold Mirror	
Copy Property		
Data Points		
Sort by		
<u>Add</u>		
Delete		
Solve For:		
<none></none>		
	Grid Plot	

偏振计算

■ Demo/Polarization示例

■ Demo/Polarization示例

Apply Properties		_ 🗆 ×
Importance Sampling Exit Surface Diffraction Raytrace F Temperature Distribution Fluorescence		race Flag
Material Surface Surface Source	Prescription	Color
Mueller Matrix Gradient Index Br	lk Scatter Tem	nerature
Component: Linear Quarte Fast Axis to X Axis: Anone> Linear Polari Circular Polari Circular Polari Circular Polari Circular Polari Circular Halfwa I.0000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.00000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.0000	rwave Ref zer rizer rwave Retard ve Retarder wave Retarde 00 0.0000000 00 1.0000000 00 0.00000000	y Type y

光源设定

■ Grid Source 格子光源

□平行光、高斯光束、偏振光

Surface Source

□各种灯泡、LED、荧光灯管

Source File

光源设定

Grid Source 格子光源 4.0版本之前只能建立一个 4.0版本之后可以建立任意多个 Up Vector 设定 Y轴方位

Grid Source
Grid Setup Beam Setup Polarization
Name: Grid Source 1
Grid Boundary
Outer 10 Inner 0
Grid Pattern Circular Rings: 10
Peak 1 Total 271
Grid Position and Orientation
Grid orientation Direction vectors
-Origin Normal vector Up vector
Y: 0 Y: 1
Z: 0 Z: 1 Z: 0
olor:
Irace This <u>M</u> odify <u>S</u> et Defaults

光源设定

Grid Source/Beam Setup

- □ Uniform flux/Weight position对 于高斯光束,设定光线flux相同, 光线密度按照高斯分布
- Uniform position/Weight flux
 设定密度为相同,光线能量按
 照高斯分布
- □ Converge to Point 聚焦到某点
- □ Diverge from point 从某点发散

Grid Source	
Grid Setup Beam	Setup Polarization
Spatial	Gaussian 💌
Spatial	uniform flux/weighted posi
Beam waist <mark>1</mark>	Beam waist 1
(Beam v	waist is the 1/e ² point)
Angular	Uniform (degrees 💌
Angular	uniform flux/weighted angle
Half angle 🛛	N/A O
-Beam Orientatio	on
Beam orientati	on Perpendicular to grid 💌
-Normal vecto	r Perpendicular to grid
X: O	Euler angles (degrees)
Y: 0	 Euler angles (radians) Converge to point (Fans)
Z: 1	Diverge from point (Fans
<u>T</u> race This	Modify Set Defaults

Surface Source

- 定义发光面,选择Surface
 Properties里面的Surface
 Source页面
 - Angular
 - Lambertian 余弦分布
 - Normal to Surface 垂直于表面
 - Surface Absorptance
 自定义光强分布
 - Uniform 均匀分布

Apply Properties			
Importance Sampling Evit Surface D	iffraction [Baytrace Flag]		
Temperature Distribution	Fluorescence		
Class and User Data	RenTile		
Mueller Matrix Gradient Index Bu	ilk Scatter Temperature		
Material Surface Surface Source	Prescription Color		
Source None> Source None> Source Irradiance Blackbody Graybody	Total <mark>O</mark> Total <mark>O</mark>		
Angular Lambertian	<u> </u>		
Col	or:		
🔲 Suppress random rays (Requires	: Source Importance S		
Apply			

Surface Source

- Surface Absorptance 自定义光强分布
- 到Surface标签页,点击View Data 进入编辑窗口
- 新建Property
- 输入"角度-Absorptance"参数
- 在保存之前选择Solve For Trans保证能量守恒
- 对于非对称光源在Type中选择 Anisotropic

Surface Property Editor					Ľ		
	🗖 🗖 🗄	Ŧ					
Catalog	Catalog: Def	ault	▼ N	ame: LED		•	-
Add Catalog	, Descriptions		_	,			
Delete Catalog	Description:						
Add Property	Type: Tab	ble	 Scatter: Nor 	ie		Retroreflector	
Delete Property					L	Polarization	
Copy Property							•
	Temperature (K)	Wavelength (um)	Incident Angle (deg)	Absorptance	Specular Refl	Specular Trans	
Data Points	Θ 300	0.5	0	1	0	0	
Sort by	300	0.5	5	0.9	0	0	
Add	300	0.5	10	0.8	0	0	
Delete	300	0.5	15	0.7	0	0	
	300	0.5	20	0.6	0	0	
Solve For:	300	0.5	25	0.5	0	0	
<none> ▼</none>	300	0.5	30	0.4	0	0	
Plot Options							
	Grid Pla	it 🛛					

其它光源档案

Radiant Image Source Model

Source File

描光设定

Analysis Mode

- □计算光线在所有物体、表面上的位置、方向、Flux、偏振 等数据,并将数据存储在硬盘的数据库。
- □光线信息最全,但速度慢,对硬件需求大
- □ 随时可以分析各个面的光线数据
- □ "eliprefl.oml"示例

描光设定

Simulation Mode

- □ 选取一个Exit Surface, TracePro仍然计算所有光线、面的数据,但只存储Exit Surface的光线数据
- □速度块,对硬件需求小
- □ 选取一个面Properties的Exit Surface
- □ 在Analysis菜单选择"Simulation Mode"
- □ TracePro提示哪些数据被保存,哪些数据不保存
- □ Analysis/Raytrace Options,选择是否保存Candela 数据

描光设定

设定光通量计算的最低阈值
Thresholds:光线经过各面、实体后的Flux与最初的光线的比值
Thresholds的定义与具体的计算目的及探测器灵敏度有关
LensDemo示例,设定不同Threshold观察光线情况
提升计算速度

🔲 Raytrace Optic	ons	_ 🗆 X
Simulation	n & Output	Advanced
Options	Wavelengths	Thresholds
Flux T	nreshold: 0.05	
(fraction	hal value of starting flux)	
Interce	pt Limits	
	Total Intercepts: 10	00
	Total Scatters: 10	00
	Random Scatters: 10	00
	Optical Scatters: 10	00
	Apply	<u>S</u> et Defaults

Voxel

- TracePro 在计算时的两个步骤
 - Audit 及 Raytrace

Audit

- □ 检测模型的合理性、材料是否 存在等前处理
- Voxel概念
 - (volumetric + pixel \rightarrow Voxel)
 - □ 将模型分割成小块
 - □ 菜单View/Display Voxels
 - □模型被切割的合理可以有效 提升后续RayTrace的速度

Raytrace Options

■ 软件对光线在Surface的行为的计算

- □不分光,只按照反射率、折射率 将改变穿透、反射的光线数量
- □分光,将光线能量按照反射率、 折射率分配
- 两种方式在光线数量足够多的情况下都可以很好的反应真实状况
 分光方式最终会计算数倍于初始

Raytrace Options	<u>_ </u>			
Simulation & Output Advance Options Wavelengths Thresh	ed .olds			
Radiometric Photometric 💌				
✓ Ray Splittin Specular Rays Onl ✓ Transition Simpling				
Aperture Diffrac 1 distanc	e			
Fluorescence				
Insert file source Immediately trace emission wavelengt				
Polarizatio Detect Ray Starting in Bodies				
Random Seed: 1				
<u>A</u> pply <u>S</u> e	t Defaults			

- 照度、灰度、CIE坐标、色度分析-Irradiance Map
- 光强度分析-Candela plot
- 光线数据(光线位置、方向、通量)-Ray Histories
- 偏振效应-Polarization Map
- 选择需要分析的光线-Ray Sorting

■ 光度分析的主要参数 □ 照度分析

- □ CIE, 色度分析
- □ 光强分析
- □ 光通量

辐射量

■辐射能(单位: 焦耳J)

□以电磁辐射形式发射、传输或接收的能量Q_e

■辐射通量(单位: 瓦)

□ 单位时间内发射、传输或接收的辐射能 $\Phi_e = \frac{dQ_e}{dt}$ N ■ 辐射度/辐照度(单位: W/m²) □ 单位面积上出射/接收的辐射通量 $M_e = \frac{d\Phi_e}{dA}; E_e = \frac{d\Phi_e}{dA}$ ■ 辐射强度(单位W/sr)

□ 单位立体角内的辐射通量 $I_e = \frac{d\Phi_e}{d\Omega}$ ■ 辐射亮度(单位W/sr·m²)

□ 发光面某角度方向上单位面积的辐射强度 $L_e = \frac{d\Phi_e}{\cos\theta dAd\Omega}$ $d\phi_{\rho}$

 $\cos\theta dA$

光学量

■ 光通量(流明lm)

□标度可见光对人眼视觉刺激程度的量称 Φ,

- 光出射度/光照度(勒克斯1lux=1lm/m²)
 - □ 单位面积上出射/接收的光通量 $M_V = \frac{d\Phi_V}{dA}; E_V = \frac{d\Phi_V}{dA};$
- 发光强度(坎德拉cd)(lm/sr)
 - □ 点光源在单位立体角内的光通量 $I_v = \frac{d\Phi_v}{d\Omega}$
 - □一个光源发出频率540×10¹²Hz的单色光,在一定方向的辐射强度为1/683(W/sr),则该方向的光强为1cd
- 发光亮度(cd/m²)(尼特nit) (10⁴cd/m²)(熙提sb)

□发光面元某角度方向上单位面积的发光强度

$$L_{V} = \frac{d\Phi_{V}}{\cos\theta dA d\Omega} = \frac{I_{V}}{\cos\theta dA}$$

辐射量与光学量的关系

■ 光谱光效率函数

- 光学量与辐射量之间的关系决定于人的视觉特性,人 对不同波长光响应的灵敏度是波长的函数,称为光谱 光效率函数(或视见函数)
- □观察场明暗不同时,视见函数 稍有不同
 - 明视见函数V(λ)峰值波长555nm
 暗视见函数V'(λ)峰值波长507nm
- □ 光学量与辐射量的关系为
 - 明视觉条件 $d\Phi_V(\lambda) = K_m V(\lambda) d\lambda$
 - 暗视觉条件 $d\Phi_V(\lambda) = K_m'V'(\lambda)d\lambda$
 - 由于 $V(\lambda)$ 为归一化函数,因此系数分别为 $K_m = 683 lm/W$

■ 照度分析Irradiance Map

■ 照度分析

- Quantities to Plot
 - Irradiance 照度
 - CIE 色坐标
 - Bitmap RGB 伪彩色 (用RGB表示三种波长, 系统需要包括3种波长)
 - TrueColor 真实色彩
- Map Count
 - 报告图被分割的数量,格子 分割的越细,需要计算更多 的光线保证在每个格子中有 足够多的光线得到准确的计算结果

Orientation of Plot plane

■ 报告图的方向和角度, TracePro可以自动计算从垂直与观察面的 方向观察计算结果

Quantities to plot	iance 💌		
Rays to plot Incid	dent 💌	🗖 No	rmalize to emitted flux
🗖 Set Maj	<u>¢</u> 0	🔲 Set Mi <u>n</u>	0
Display Options			
☑ Smoothing	🗌 Log Scale	Map Count:	20
Contour Plot	🔲 Relief Plot	Resolution:	128x128
🔲 Local Coordinates	Profiles	Symmetry:	None
🔲 Gradient Display		Color Map:	Color(rainbow) on Black
Convert to foot-cano	lles (fc)		Auto Update is ON
Contour Levels: V Auto, level	S	🗖 Use	percent of Max. (1.0 = 100
Lontour Levels: Auto, level Selection	s	>	percent of Max. (1.0 = 100
Selection 15	s	> Use	: percent of Max. (1.0 = 100
Contour Levels: Auto. level Selection Number: 15 Orientation of plot plane	s	> Use	: percent of Max. (1.0 = 100 mail and Up Vectors
Contour Levels: Auto, level Selection Number: 15 Orientation of plot plane Normal Vector: X	s	V calculate No	rmal and Up Vectors

■ 光强分析Candela plot

Candela Distributions 光强分布图分析设定

- cd/klm 将纵坐标单位转换 为每1000流明的光强
- Number of horizontal angles 光强分布切面数
- Luminaire format 切换 半球光强/全景光强 显示模式

■ 光强分析Candela plot

- Orientation and Rays 分析设定
 - Missed rays 没有照射到任何实体上的 光线
 - Exiting rays

离开选定表面的光线 (仅用于分析模式)

Incident rays

入射到选定表面的光线

🕅 Candela Options	_ 🗆 ×
Orientation and Rays Polar Iso-Candela Rectangular Iso-Cande	la Candela Distributions
X: 0 Y: -1 Z: 0 Z: 2:	Normal Up
 Use missed rays for Candela Data Use exiting rays from selected surface (Analysis Only) Use incident rays from selected surface or Exit Surface 	The Normal vector defines the global direction of the Zero axis for vertical angles. The Up vector defines the global direction of
Data Processing Symmetry None	the Zero axis for horizontal angles.
	<u>S</u> et Defaults

- 光强分析Candela plot
 - □ Polar ISO- Candela 极坐标光强图设定
 - Smoothing 平滑
 - Contour Plot 绘制等高线

📽 Candela Options	. 🗆 🗵
Orientation and Rays Polar Iso-Candela Rectangular Iso-Candela Candela Distributions	
General Candela Plot Options Smoothing 90 Contour Plot Angular width (deg) Set Max: Image: Set Min: Log plot Image: Set Max	
Color Map: Grayscale on White Auto. levels Levels: Selection Number: 10	
Apply Set D	efaults

■ 光强分析Candela plot Rectangular ISO- Candela 直角坐标光强图

0.225	
🖁 Candela Options 📃 🗆 🗙	
Orientation and Rays Polar Iso-Candela Rectangular Iso-Candela Candela Distributions	
Rectangular Iso-Candela Plot Options Smoothing 90 Height (deg) 10 Contour Plot Width (deg) Set Mag: Set Mag: Set Mag: Log Angle convention: Orthogonal angles Profiles Color Map: Grayscale On White 3D Plot Auto. levels Levels: Selection Number:	7.5L Min:0.0
<u>Apply</u>	

cd

0.4-

0.375-

0.35-0.325-

0.3-

0.275-0.25-
导光管、积分柱广泛应用在DLP投影设备中 首先将TracePro设定为Analysis模式 菜单Analysis/Analysis Mode

■ 首先建立圆柱形状的Light pipe

□选择Insert → Primitive Solid...

- □选择Cylinder/Cone页面
- □ 在对话框中输入圆柱的参数:
 - 起点在原点(0, 0, 0)
 - 长度(Length) 30 mm
 - 半径(Major R) 2 mm

Insert Primitive Solids	
Block Cylinder/Cone	Torus Sphere Thin Sheet
💽 Cylind 🔿 Cone	🔲 Elliptical J
Base Major <mark>2</mark> Minor 2	Top Major 2 Length 30
Base Position X: 0 Y: 0 Z: 0	Base Rotation X: 0 Y: 0 Z: 0
Insert	in Degrees Modify

- 将圆柱体的右端面弯曲、 拉伸成弧形导光管
 - □ 在左侧的列表中选择右端 面Surface2
 - □选择菜单
 - Edit/Surface/Revolve(旋转),

该指令使指定平面绕指定轴和方向旋转一定角度

将圆柱体的右端面弯曲、拉伸成弧形
 在左侧的列表中选择右端面Surface2
 选择菜单Edit/Surface/Revolve(旋转),该指令使指定平面绕指定轴和方向旋转一定角度

■ 将弧形再进行变形拉伸Sweep

□ 在列表中选择旋转后的端面Surface4

- □选择菜单Edit/Surface/Sweep(拉伸),该指令使平面 沿预设的方向平行推进一定距离
 - Draft angle 平面平移后的锥角, 正数使平面面积变大,负数使 平面面积变小。
 - Sweep along surface normal 沿平面法线方向平移
 - User sweep direction 由用户自定义平移方向。

Sweep Surface	Selection	_ 🗆 🗙	
Distance 15			
Draft angle <mark>-2</mark>		in Degrees	
 Sweep along surface normal 			
C User sweep direction			
× direction	0	(Surface normal	
Y direction	-1	and draft angle are for planar	
Z direction	0	surfaces only)	
ГГ		7	
	Apply]	

- 模型建立完成,接着设定模型的材料
- TracePro 将各种属性赋予物体和表面以使其成为一个具有光学特征的模型
 - □ 选择物体Object 1, 在右键菜单中选择Properties
 - □ 选择Material材料选项页,在类别Catalog中选择Plastic塑料,在名称 Name中选择Acrylic
 - □ 在下方显示所选材料在指定波长下的吸收率和透过率
 - □ 应用之后在左侧列表中实体的属性同步更新

Direct S Surface 0 Surface 1 Surface 2 Surface 3 Surface 4 Surface 4 Entity 3 Cyl/Cone Material from PLASTIC Material name Acrylic	Z Apply Properties Insportance Sampling Exit Surface Diffraction Raytrace Flag Mueller Matrix Gradient Index Bulk Scattering Temperature Class and User Data RepTile Temperature Distribution Material Surface Surface Source Prescription Color Datalog: PLASTIC Name: Acrylic Name Display of index and absorptance for given wavelength Wavelength: 0.5461 un Index: 1.49309 Absorption 0 "ansmission 1 throug 10 mm The wavelengths used during the Raytrace are set using the Raytrace Options dialog
	Current Material on selected Object Acrylic from: PLASTIC If (None> is displayed: Check the TracePro Database Apply

■ 为达到较好的光路耦合性能,在导光管前安置一汇聚透镜

□ 选择菜单Insert/Lens Element,透镜参数为

- Surface1 Radius : 25
- Thickness 3.5mm
- Material BK7
- Position (0, 0, -40)

🗖 Insert Lens Element	Insert Lens Element
Lens Aperture Obstruction Position Aspheric Units Radius hickness: 3.5 Material atalog: SCHOTT Name: BK7 Surface 1 Cylindric Radius: 25 Conic: 0 Conic: 0 Conic: 0	Lens Aperture Obstruction Position Aspheric First Surface Center X: 0 Y: 0 Z: -40 In Degrees
Insert Lens Modify Lens	Insert Lens Modify Lens

- 设定光源
 - □菜单选择

Analysis/Grid Raytrace

- 网格光线沿圆周排列 Annular
- 半径 Outer Radius 10mm
- 网格光线圆周数量 Rings: 10
- 光线的起点位置 (0, 0, -48)

Grid Raytrace			
Grid Setup Beam Setup Polarization			
Grid Boundary			
Annul ar			
Outer 10 Inner 0			
Grid Pattern			
Circular 💌 Rings: 10			
Total 271 Peak 1			
Grid Position and Orientation			
Grid orientation Direction vectors			
-Origin Normal vector Up vector			
x: 0 x: 0 x: 0			
y. 0 y. 1			
Apply & Irace Rays Apply			

■ 应用之后可以看到计算结果

对计算结果进行分析 选择Surface 4 在菜单中选择 Analysis/ Irradiance/Illuminance Maps 出现Surface4的照度图

在右键菜单中选择
 Illuminance Options
 对照度图进行设定

Irradiance/Illuminance Ma	ap Options			
Map Data				
Quantities to plot Irradiance	· ·			
Rays to plot Incident	Nor	malize to emitted flux		
🗔 Set Ma <u>x</u> : 🛛	□ Set Mi <u>n</u> :	0		
Display Options				
☑ <u>S</u> moothing □ L	.og Scale Map Count:	25		
Contour Plot 🗖 R	Relief Plot Resolution:	128x128		
🗖 Local Coordinates 🔽 P	Profiles Symmetry:	None		
🔲 Gradient Display	Color Map:	Grayscale on Black 💌		
Convert to foot-candles (fo	c)	Auto Update is ON		
Contour Levels:	_			
Auto, levels	use	percent of Max. (1.0 = 100%)		
Selection	>			
■ Number: 15 <				
Orientation of plot plane	Orientation of plot plane			
Automatically calculate Normal and Up Vectors				
Normal Vector: X: 0	Y: [-1	Z: 0		
Up Vector: X: 0	Y:]0	Z: -1		
	Apply	Set Defaults		

■ 对计算结果进行分析

■ 照度图界面设定介绍

- □ Normalize to emitted flux 将每条光线的能量除以从光源发出的 总的出射光线的能量,这样对计算效率非常方便
- □ Quantities to plot: 显示不同坐标尺度的数据(照度W/m²、亮度 W/m²/sr等)
- □ Rays to plot: 设定观察吸收/入射光线数据
- □ Smoothing 对观察面接收到的辐射值进行高斯平滑滤波
- □ Profiles 产生辐射分布图的横断面图点击辐射分布图上任何一 点都会同时产生水平与垂直的横断面图
- Normal Vector 和 Up Vector 代表光线收集平面的法线方向与 垂直方向,若不能确定其值,则可通过选择 Automatically calculate Normal and Up Vector 项,让 TracePro 自动计算。

- 对计算结果进行分析
 - □ 选择Surface 4
 - 在菜单中选择 Analysis/ Candela plot/Polar ISO-Candela 出现Surface4的光强度图
 - 在右键菜单中选择
 Candela Options
 对圆周光强图进行设定
 - □ Angular width 显示的角宽度
 - □ Auto Level 自动设定图比例的级别

Candela Options	
Rectangular Iso-Candela	Candela Distributions
Orientation and Rays	Polar Iso-Candela
General Candela Plot Options	
Smoothing 20	
🔲 Contour Plo 🛛 Angular width	90
🔲 Set Ma <u>x</u> : 🚺 🔲 Set Mi <u>n</u> :	0
Log plo-	
Color Grayscale	on 💌
🔽 Auto. leve	
-Levels:	
Selecti (0 > 0	
□ Number: 10 <	
L	
	ly Set Defaults

■ 对计算结果进行分析

杂散光分析

- 杂散光是不需要的或者对成像造成负面效应的光线
- TracePro 可以处理的杂散光
 - □ Ghost: 在透镜表面产生偶数次反射的光线
 - □一次散射光:光源直接照射到系统的部件上产生
 - □ Straight Shot: 光源直接照射到观察面
 - □多次散射光线:光源先照射到遮光板再照射到光学组件
 - □边缘绕射(Edge Diffraction)孔径大小相对波长比值较小时,视场外的光线也会通过孔径光阑AS到达成像面
 - □红外系统中的自体辐射: 由仪器本身的热辐射产生

杂散光分析

Display Selected Rays

□菜单Analysis,在照度图中按住Shift,用鼠标左键选择区域,在模型中显示区域中的光线

Ray Sorting

- Sort ray path
- Ray History & Flux Report

Radiance 模拟人眼观察

- 人眼观察物体的辉度
 防止观察位置、观察面 宽度、高度
- Model View: 当前视窗 位置观察
- 需要设置较高分辨率, 计算量很大

Radiance	
Name: Radiance 1	New
Width: 20	Height: 20
Width pixels: 100	Height pixels: 100
Pixel width: 0.2	Model View
Quality r	Min rays/pixel: 10 lax rays/pixel: 10
Eye position Targ	et position Up vector
X: 0 X:	o X: O
Y: 0 Y:	0 Y: 1
Z: 100 Z:	0 Z: 0
Trace this Trace all	Modify Display map Display all

Raytrace Options

Sort Ray Path

对追击光线的路径进行汇总分类
主要用于分析杂散光
需要在Simulation 模式
在文件目录下生成文件
LensDemo 示例

🗌 Raytrace Options 📃 🔲 🕽			
Options Wavelengths Thresholds Simulation & Output Advanced			
Simulation Data Collection Collect Exit Surface Collect Candela Da Index file lensdemo.ndx			
Simulation File Output Save data to disk during ra Save Ray History to . Sort Ray Path 1000 # of			
Simulation and Analysis File Output			
Apply Set Defaults			

LED 反光杯-练习

- TracePro 建模时应避免实体间的相互干扰
- 当大实体中包含小实体时,可以同时建立两个相同的小实体
- 在布尔运算中用大实体减去一个小实体,则另一个小实体与大实体严密配合。
- LED 反光杯建模

LED 反光杯-建模

■ 1. 建立底面大小为3.0mm×3.4mm, 在菜单选择 Insert/Primitive Solids

2. 采用沿Z轴正方向,
 Sweep方式,3次完成外形

顺序	Distance	Drift angle
1	0.9	4
2	0.2	0
3	0.9	-4

	Insert Primitive Solids			
Block Cylinder/Cone Torus Sphere Thin Sheet				
	Name: Thin Sheet 2			
	X Point	Y Point	Z Point	
	1.5	1.7	0.0	
	-1.5	1.7	0	
	-1.5	-1.7	0	
	1.5	-1.7	0	
	_		-	
	•			
Insert Clear Grid				
_				

LED 反光杯-建模

■ 3. 建立Cone, Insert/Primitive Solids/Cone

■ 4. 将两实体做布尔运算

Insert Primitive Solids		ĸ	
Block Cylinder/Cone Torus Sphere Thin Sheet			
Name: Cone 1			
O Cylinder 🖲 Cone	Elliptical Base		
Base	Тор		
Major R: 0.65	Major R: 1.2		
Minor R: 0.65	Length: 0.9		
Base Position	Base Rotation		
X: 0	X: 0	I	
Y: 0	Y: 0		
Z: 1.1	Z: 0		
	in Degrees		
Insert	Modify		

LED 反光杯-建模

■ 5. 建立散光板Diffuser, Insert/Primitive Solids/Cylinder

■ 6. 建立发光体,

Insert/Primitive Solid/Block

Insert Primitive Solids	Insert Primitive Solids
Block Cylinder/Cone Torus Sphere Thin Sheet	Block Cylinder/Cone Torus Sphere Thin Sheet
Block Cylinder/Cone Torus Sphere Thin Sheet Name: Diffuser © Cylinder © Cone Elliptical Base Base Top Major R: 1.2 Minor R: 1.2 Base Position X: Y: 0 Y: 0 Y: 0 Z: 1.99 In Degrees	Block Cylinder/Cone Torus Sphere Thin Sheet Vame: Die Width X: 0.2 Y: 0.2 Z: 0.1 Center Position X: 0 Y: 0 Z: 1.15 Insert Modify
Insert <u>M</u> odify	

LED 反光杯-建模 ■ 7. 建立观察表面

Insert Primitive Solids		
Block Cylinder/Cone To	rus Sphere Thin Sheet	
Name: Observer	Elliptical Base	
Base Major R: 1.2 Minor R: 1.2	Top Major R: 1.2 Length: 0.01	
Base Position X: 0 Y: 0 Z: 2.1	Base Rotation X: 0 Y: 0 Z: 0 in Degrees	
Insert	Modify	

LED 反光杯-设定材质

■ 1.选择杯体内壁和底面,设置为Perfect Mirror

LED 反光杯-设定材质

2.设定散光板材质,Define/Edit Property Data/Surface Properties/Add Property

■ 3. 将Absorptance 设为0→Solve for BTDF→保存

Surface Prope	erty Editor						_ 0	×
]						
Catalog	Catalog: Default		Name: Lambertia	n Diffuser 1	•			-
Add Catalog	Description							
Delete Catalog					trareflactor			
Add Property	Type: Table		ocatter: JABg	□ ne	larization			
Delete Property				\sim				
Copy Property	Temperature (K)	Wavelength (um)	Incident Angle (deg)	Absorptance	Specular Refl	Specular Trans	Integrated BRDF	В
- Data Points	300	0.5	0	0	0	0	0	0
Sort by				\sim				
<u>Add</u>								
Delete								
Solve For:								
Plot Options								
								Þ
	Grid Plot							-

LED 反光杯-设定材质、光源

■ 4. 选择散光板,设置面属性为Lambertian Diffuser

■ 5. 选定光源发光表面,选择发光模式与光线数

🗖 Ар	ply Properties			<u> </u>
Imi Mu Clas Ma	oortance Sampling eeller Matrix s and User Data iterial Surface Source Type: Flu Flux: 0.0	g Exit Surface Gradient Index RepTile Tempe e Surface Sou x 1 Watts	Diffraction Bulk Scatter erature Distributic urce Prescrip Total Rays: Total Power:	Raytrace Flag Temperature In Fluorescence tion Color
	Wave. (um)	Weight	Power (W)	
	0.5461	1	0	
	Angula Lambertian Color: Suppress random rays (Requires Source Importance Samplir Apply Calculate Power			

LED 反光杯-模拟,观察

- 1. 按Ray Tracing开始模拟
- 2. 选择观察面靠近LED方向的表面,点选
 Irradiance and Illuminance Options打开照度设定 对话框

Irradiance/Illuminance M	lap Options		×	
Map Data Quantities to plot Irradiance Rays to plot Incident Set Mag: U	No	rmalize to emitted flux		
Display Options				
🔽 Smoothing 🖉 🗖 Log :	Scale Map Count:	40		
🗖 Contour Plot 🔲 Relie	ef Plot Resolution:	128x128	•	
🔲 Local Coordinates 🔽 Profil	les Symmetry:	None	•	
🔽 Gradient Display	Color Map:	Grayscale on Black	•	
Convert to foot-candles (fc)		Auto Update is ON		
Contour Levels: Image: Contour Levels Image: Auto. levels Image: Use percent of Max. (1.0 = 100%) Selection Image: Number: 15				
Orientation of plot plane				
Normal Vector: X: 0 Up Vector: X: 0	Y: 0 Y: 1 Y: 1 Apply	Z: [-1 Z: 0 Set De	efaults	

LED 反光杯-模拟,观察

3. 设定 Candela Option, Analysis /Candela Options

Candela Options	<u>_ </u>	Candela Options
Orientation and Rays Polar Iso-Candela Rectangular Iso-Cande	ela Candela Distributions	Orientation and Rays Polar Iso-Candela Rectangular Iso-Candela Candela Distributions
Normal Vector Up Vector X: 0 Y: 0 Z: 1 Z: 1 Z: 0 Ray Selection Image: Comparison of the selected surface (Analysis Only Comparison) Image: Use exiting rays from selected surface or Exit Surface Data Processing Symmetry None	Drientation Normal Up With a state of the state defines the global direction of the Zero axis for vertical angles. The Up vector defines the global direction of the Zero axis for horizontal angles.	Distribution Data Selection Set Mag: Image: Set Mig: Image: Image: Set Mig: </td
	<u>S</u> et Defaults	<u>Apply</u> <u>S</u> et Defaults

LED 反光杯-模拟,观察

4. 烛光分布图 Rectangular Candela, Polar Candela

LED 三色混光

- 几个光源发不同波长色光时如何处理?
- TracePro默认所有光源都发所有波长的光
- 为设定不同光源设定不同波长,要使用Surface Absorbtance
- LED 示例

- 定义矩形背光板 长40mm, 宽30mm, 高5mm
- 设定材质为Plastic/PC
- 建立网点
 - □ 新建立球状网点
 - □ 宽度 0.5+jCol*0.005
 - □ 高度 0.7+iRow*0.005
 - □曲率半径0.2
 - □ 深度0.1
- 在模型窗口中显示网点情况
- 网点超过面边界的部分不会被计算

Enter New RepTile Property	×
RepTile Property Name:	
S1	
Adding to Catalog: Default	
Geometry Type: Sphere	•
Tile Type: Rectangles	•
Variation Type: Parameterized	-
OK Cancel	

■ 建立光源 □ 插入圆柱发光体 □ 设定发光属性

Insert Primitive Sol	ids 📃 🗆 🗙
Block Cylinder/Cone	Torus Sphere Thin Sheet
Name: Cylinder 2	
Cvlind C Cone	Elliptical 1
Base Major <mark>0.5</mark> Minor 0.5	Top Major 0.5 Length 38
Base Position X: -19 Y: 0	Base Rotation X: 0 Y: 90
2: 17.5	2: JU in Degrees

Apply Properties		×	
Mueller Matrix Gra	dient Index Bul	k Scatter 📔 Temperature	
Class and Use	r Data	RepTile	
Temperature Dis	tribution	Fluorescence	
Importance Sampling	Exit Surface Dif	fraction Raytrace Flag	
Material Surface	Surface Source	Prescription Color	
Source Flux Flux: 30	Source Flux Flux: 30 Watts Total 10000 Total 0		
Wave. (um)	Weight	Power (W)	
0.5461 1 0		0	
Angular Lambertian			
Color:			
🔲 Suppress random rays (Requires Source Importance S			
	Apply	Calculate Power	

■ 建立反光碗

Insert Reflector		
Compour	nd Trough	
Rectangular Concentrato	r Facetted Rim Ray	
Conic 3D Compoun	d Trough (Cylinder)	
Name: Trough H	Reflector 1	
Shape: Parabol:	ic 💌	
Length: 40	Slit <mark>O</mark>	
Thickness: 0.5	Slit <mark>O</mark>	
Depth: <mark>3</mark>		
-Foci		
Focal 0.5	N/A	
Origin	Rotation	
X: O	X: 180	
Y: 0	Y: 0	
7: 20	7: 0	
2. jeo		
	in Degrees	
Insert	Modify	

- 建立反光板
 - □反光板与RepTile之间最好有小距离
 - □材质设置为Diffuse White(最好有实际数据)
- 导光板光源以外的3个面设定为反光面 Perfect Mirror

进行光线追迹观察表面光强分布

Irradiance Min:1.0402e-010 W/m², Max:1.4724e+005 W/m², Ave:1.1469e+005 W/m², RMS:47850, Total Flux:137.63 W 136594 Incident Rays
Back Light背光板实例

■ 将光源用LED代替

□ 建立椭圆发光区域的LED

□ 将表面光源设定为Lambertian

Insert Primitive Sol	ids 📃 🗶
Block Cylinder/Cone	Torus Sphere Thin Sheet
Name: Cylinder 1	
🖲 Cylind C Cone	🔽 Elliptical 1
Base Major <mark>3</mark> Minor 2	Top Major 3 Length 1
Base Position X: 0 Y: 0 Z: 15.5	Base Rotation X: 0 Y: 0 Z: 0 in Degrees
Insert	Modify

重点采样Importance Sampling

- 改进 Monde Carlo Raytrace的一种技术
- 只能用于具有散射特性的反射、透射表面
- 首先选择散射表面
- 在面特性表中选择Importance Sampling
- 设定重点采样的目标Target位置

- 建立球壳内径48mm,厚度2mm
- 在球壳下面挖半径8mm圆孔
- 建立探测器在圆孔下方Y=-54mm 处,半径为 8mm
- 编辑特性
 - □ 在Surface Property里面增加特性
 - □ 设定Absorptance 为0.01
 - □ Solve 中选择BRDF
 - □将新的表面特性应用于球壳内壁

■ 定义光源及计算门坎(Threshold)

□ 定义Threshold为 0.0005

Raytrace Options	
Simulation & Output Options Wavelengt	Advanced
Flux <mark>0.000</mark> (fractional value o	15 f
Intercept Limits-	
Tot	al 1000
Tot	al 1000
Optic	al 1000
-	
Appl	y <u>S</u> et Defaults

■ 加入Grid光源 ■ 位置为0,0,44

Grid Source		<u>_ X</u>
Grid Setup Beam Set	up Polarization	n]
Name: Grid Sour	ce 1	▼ New
Grid Boundary	Annul ar	_
Outer 5	Inner	
Grid Pattern Circular	▼ Ring	15: <mark>3</mark>
Peak 1	Total	19
-Grid Position and	Orientation —	
Grid orientation	Direction v	rectors 💌
-Origin-N	formal vector	Up vector
X: 0	K: 0	X: O
Y: 0	r: <mark>0</mark>	Y: 1
Z: 44	Z: 1	Z: 0
	olor	
Irace This	<u>M</u> odify	<u>S</u> et Defaults

- 进行光线追迹
- 观察探测器表面的光强分布
- 只有数条光线入射,如何改善?
 追迹更多的光线-更多时间、更大的内存
 Importance Sampling

Importance Sampling

- □ 选择球壳内壁
- □ 在面特性表中,选择 Importance Sampling 标签
- □ 设定Target

Apply Properties		
Mueller Matrix Gradient Index Bu	ulk Scatter Temperature	
Class and User Data	RepTile	
Temperature Distribution	Fluorescence	
Material Surface Surface Source	Prescription Color	
Importance Sampling Exit Surface D	iffraction Raytrace Flag	
Target: 1 v of 1 Rays Directio Toward v Sh Target Center X: 0 Y: -47 X: 1 0	Vcel: 1 nape: Annular 💌 Up Vector X: 0 Y: 0	
Z: 0 Target Size Outer 8 Inner 0 Single Surface is se	2: 1 ls in each dimension Rings: 1 lices: 1 lected.	
Add Apply	Delete	

■ 重新计算分析

■ 观察探测器表面的光强报告变化

■ 分光棱镜广泛用于光谱分析等光学系统

■ 首先建立实体模型

- 分光棱镜的截面为多边形,采用Thin Sheet 配
 - 合 Sweep 指令生成
 - □选择菜单 Insert / Primitive Solid
 □ 在对话框中选择 Thin Sheet
 - □ 按图输入5个多边形顶点坐标

- 选择菜单Edit/Surface/Sweep将多边形沿x轴进 行拉伸形成五棱镜
- 注意: Thin Sheet建立时需要按照顺时针或逆 时针输入每个节点

Sweep Surface Selection	
Distance 10	
Draft angle 0	in Degrees
Sweep along surface	e normal
C User sweep direction	1
X direction 0	(Surface normal
Y direction	and draft angle are for planar
Z direction 0	surfaces only)
	7
Apply]

- 设定模型的材料
- TracePro 将各种属性赋 予物体和表面以使其成 为一个具有光学特征的 模型
 - □ 选择物体Object 1, 在右键菜 单中选择Properties
 - □ 选择Material材料选项页, 类别Catalog中选择SCHOTT 名称Name中选择BK7
 - 在下方显示所选材料在指定 波长下的吸收率和透过率
 - 应用之后在左侧列表中实体的属性同步更新

■ 单击目录树中的 Surface 1

- 按下 Ctrl 键,同时按下 Surface 3。
- 这两个面将被赋予镜面属性,点击 Surface 项, 在第二个下拉菜单中选择 Perfect Mirror。
- 点击 Apply 使设置生效。可在目录树中查看设置 是否正确。

Apply Properties
Importance Sampling Exit Surface Diffraction Raytrace Flag Mueller Matrix Gradient Index Bulk Scattering Temperature Class and User Data RepTile Temperature Distribution Material Surface Surface Source Prescription Color atalog: Default Name: Perfect Mirror
<pre>>scription: Mirror with 100% reflectance, no scatter Scatter: No Scatter Reference Data Type: Table, no polarization, no retroreflector</pre>
Reference Material Angles measured in Air - Refractive Index = 1.1 Angles are corrected by Snell's law and the refractive index on either side of the Surface Property. Select measured index
Apply View Data

⊡- Object 1

- . ⊕- Surface 0
- 🖃 Surface 1

 - Surface Property: Perfect Mirror
 - i.... Plane
- . ⊕ Surface 2
- 🚊 Surface 3

 - Surface Property: Perfect Mirror
 - Plane
- 🕂 Surface 4
- 🗄 Surface 5
- 🕂 Surface 6
- --- Entity 1
- --- Material from SCHOTT
- 🦾 Material name BK7

- 按照同样的方式再建立另外一个棱镜
 分光棱镜的截面为多边形,采用Thin Sheet 配合 Sweep 指令生成
 选择菜单 Insert / Primitive Solid
 在对话框中选择 Thin Sheet
 按图输入4个多边形顶点坐标
 赋予分光棱镜 Catalog : SCHOTT |
- Name: SF6 的材料属性

■ 模型参数及之后的图形

- 为观察棱镜组的分光效果,添加一观察面
 □ 采用Thin Sheet 在如下坐标建立
 - □将观察面的Surface properties设为Perfect Absorber

X Point -4 -6 -4	Y Point -3 -7 -7 -7	Z Point 15 15 15 15 4 15 15 2 2 2 2 2 2 2 2 2 2 2 2 2	Grid	 Object 1 Object 2 Object 3 Surface 0 Surface Property: Perfect Absort Plane Entity 9 Material from <none></none> Material name <none></none>
---------------------------	---------------------------------	---	------	--

■ 模型建立后的图形

- 使用者可以从新定义光强阀值。默认值是0.05,这意味着每根光线向 各个方向反射,分解成更多的光线,如果新分解出的光线的强度高 于初始强度的0.05%,则会被继续追迹,若低于0.05%,则不会被追 迹。
- 为了能在仿真中更加准确地再现真实情况,应根据实际情况调节这一阀值。
- 点击菜单栏 Analysis / Raytrace Options,选择 Thresholds 项,填入0.15。
- 此外,注意波长的选取,对于验证分光作用,追迹光线应根据所设 计的光谱仪的光谱范围来选取。
- 同样是在 Analysis / Raytrace Options 中,选择 Wavelengths 项, 在 Type 栏选择 Discrete Wavebands。本例程选取0.40um到 0.70um,步长0.01um的波段

Raytrace Options	Raytrace Options
Simulation & Output Advanced Options Wavelengths Thresholds	Simulation & Output Advanced Options Wavelengths Thresholds
Flux D. 15	Type Discrete Wavelengths
(fractional value of	election 0.70 💌 Add Delete
Intercept Limits	Wavelengths
Total 1000	Value (um) Weight
Total 1000	
Pro des 1000	
Kandom 1000	
Optical 1000	0.44 1
	0.45 1
	0.46 1
	0.47 1
<u>Apply</u> <u>Set Defaults</u>	Apply Set Defaults

- 用于光谱仪的分光棱镜,
 其入射光通常是光束通
 过一个入射狭缝后形成
 的窄带
- 所以本例中用于光线追迹 的光线在
 Analysis/Grid RayTrace
 中设定

🗖 Grid Raytrace	_ 🗆 X
Grid Setup Beam Setup Polarization	
-Grid Boundary	ا n
Y 0.75 X 0.75	-
Grid Pattern	
Rectangular 💌 Y points: 1	
X points: 100	
Grid Position and Orientation	
Grid orientation Direction vectors	
-Origin	
X: -5 X: 0 X: 0	
Y: 3 Y: 0 Y: 1	
Z: -5 Z: 1 Z: 0	
Apply & Irace Rays	t Defaults

- Grid Boundary 光束的边界形状,Y、X 中填入的是中心 到边的距离,
- Grid Pattern 指光线的分布形式,
- Y points、X points 边界中竖直方向和水平方向所包含的 光线数。
- Origin指边界的中心坐标,
- Normal Vector 代表物体(光线)前进方向,
- Up Vector 决定垂直于Normal Vector方向的物体的方位

- 点击Apply & Trace Rays开始进行计算
- 查看观察面的情况
 - □ 在左侧实体列表中选择观察面Object3的Surface0
 - □ 在菜单中选择Analysis/Irradiance/Illuminace Maps弹 出照度图
 - □ 在右键菜单中选择照度图设定Irradiance/Illuminance Options

- 结果分析
 - □ 在Quantities to plot中选 择CIE(xy)标准色度图
 - □ 在Rays to plot选择被吸 收的光线(Absorbed)
 - □ 点击Apply观察结果

Irradiance/Illuminance Map Option	s <mark>_ </mark>
Map Data	
Quantities to plot CIE (xy)	
Rays to plot Absorbed 💌	Normalize to emitted flux
🔲 Set Ma <u>x</u> : 🛛	Set Min: 0
Display Options	
🗌 💁 Smoothing 🔲 Log Scale	Map Count: 50
Contour Plot E Relief Plot	Resolution: 128x128
Local Coordinates Profiles	Symmetry: None
Gradient Display	Color Map: Color(rainbow) on White
Convert to foot-candles (fc)	Auto Update is ON
Contour Levels:	□ Use percent of Max (1.0 = 100%)
Selection	>
Orientation of plot plane	
	v Calculate Normal and Up Vectors
Normal Vector: X: U	Y: [U Z:]]
Up vector: X: Ju	
4	Apply Set Defaults

■ 棱镜分光后在观察面得到的结果

■ 显示光学系统中的PS Converter 模拟设计

- □显示设备中显示器的发光效率,提高光源的利用率 一直是需要重视的问题
- □液晶显示仅仅利用某一特定方向的偏振光
- PS Converter将光源中一个方向的偏振光转换到相 垂直的可以被液晶片利用的另一个方向,从而提高 光能的利用率

■ 电磁波的偏振状态可以分为 □ P偏振,对应TE振动方向 □S偏振,对应TM振动方向 □ 两种偏振方向互相垂直 ■ 光波可以表示成Ep, Es的不同组合 □线偏振光: Ep, Es的相对相位不变 □圆偏振: Ep, Es振幅相同,相位相差90度 □椭圆偏振: Ep, Es振幅不同,相位不等于90度。

- 三种基本的光的偏振状态可以通过某些特殊设计的器件相互转换或分离筛选
 - Retarder Plate: 相位延迟片 通过双折射改变Ep, Es的相对相位,从而改变光波的 偏振形式
 - □ Polarization Beam Splitter (PBS) 偏振分光器 将入社光波中的Ep和Es分量分离
 - □ Polarizer: 偏振片
 - 只允许某特定方向的偏振通过

- 偏振分光器PBS原理
 - 光束以布鲁斯特角(Brewster angle)入射到多层膜时, P偏振状态的光束会全部透过而S偏振则被部分反射
 经过多层膜后S偏振(几乎)全部被反射,P偏振则全部透过

- 偏振分光器设计思路
 - □自然光(包括同样幅度的P偏振和S偏振)入射
 - □首先将P偏振和S偏振分开
 - □ 再将一个偏振方向的光束转换为另外一个偏振方向, 使最后的出射光束具有单一的偏振状态

■ 偏振分光PBS元件建模
 □ 厚度50mm
 □ 材质为SF7

Insert Prim	itive Solids		>
Block Cyli	nder/Cone T	orus Sphere T	hin Sheet
X Point	Y Point	Z Point	_
25	0.0	0.0	
-25	0	0	
-25	10	10	
25	10	10	
			_
,			
	Inser	t <u>C</u> lear (Grid

- ■步骤
 - □菜单指令

Insert/Primitive Solid/Thin Sheet

□将该面向Y正方向Sweep 10mm,注意Sweep沿Y方

向,因此需要在拉伸方向填入(0,1,0)

将生成的实体沿Y正方向复制一个
 选中生成的Object1,在右键菜单中选择Move
 填入Y方向的相对移动距离10mm
 单击Copy,则在10mm位置复制一个新的实体

Mous Falaction	Copied Suffee 0 Suffee 0 Suffee 1 Suffee 5 Suffee 6 Suffee 6				
Relative O Absolute O Distance X Center 0 Y Center 10 Z Center 0	uply				
	K Fre Help, ress F1	Y La z	x0.00001/24.4292.7-14.1571 minuters	_Z	ki M

■ 设定材质

- □选择两个新建立的实体,在右键菜单中选择 Properties/Material,设定为SCHOTT的BK7
- □选择两个实体的接触表面作为镀膜面
- □ 选择软件菜单的Define/Edit Property Data/Thin film stacks指令
- □ 在对话框中选择Add property建立一个新的膜系
- □选择Insert按钮在新膜系中输入7个点(7层膜)

■ 设定材质

Catalog	Catalog: Default Name: User								
Add Catalog	Description								
Delete Catalog									
Add Property.1									
Delete Property		Mahavial Catalaa		Markey fall Mary a					
Copy Property	Thickness (um) INCIDENT MEDIA	Material Catalog)	Material Name					
– Data Points –––––	0.063	Coating	•	ZnS	-				
	0.117	Coating	•	MgF2	-				
Insert 2	0.063	Coating	•	ZnS	-				
	0.117	Coating	•	MgF2	-				
Delete	0.063	Coating	•	ZnS	-				
	0.117	Coating	•	MgF2	-				
	0.063	Coating	•	ZnS	-				
	SUBSTRATE								

- 设定材质
 - □将建立好的膜系数据加入表面特征
 - 选择工具菜单
 Define/Edit Property Data/Surface Properties
 - 选择Add Property新增一个表面特征,取名PS
 - 在表面特征类型Type中选择Stack膜层
 - 在Stack列表中选择刚刚建好的膜系,保存

■ 设定材质

🖉 🖓 🖳 🛛 🔓			
Catalog	Catalog: Default	Name: PS	T
Add Catalog	Description		
Delete Catalog			E Datum
Add Property	Type: Stack	Scatter: None	
Delete Property	Catalog: Delaut 3	✓ Stack:	
Copy Property			
Data Points			
Sort by			
<u>A</u> dd			
Delete			
Solve For:			
Plot Options			
■ 设定材质 □ 选择需要镀膜的两个实体的交界表面 □ 左右键호单中选择

- □ 在右键菜单中选择 Properties
- □选择Surface,将建立的 表面特性应用在该界面

Apply Properties
Importance Sampling Exit Surface Diffraction Raytrace Flag Mueller Matrix Gradient Index Bulk Scattering Temperature Class and User Data RepTile Temperature Distribution Material Surface Surface Source Prescription Color atalog: Default
escription: Scatter: No Scatter General Data
Type: Stack, no polarization, no retroreflector
Apply View Data

■ 建立光源

□ Insert/Primitive Solids得到如图参数Block □ 选取Block靠近PBS的表面作为发光面

	Importance Sampling Exit Surface Diffraction Raytrace Flag
🔤 Insert Primitive Solids	Mueller Matrix Gradient Index Bulk Scattering Temperature
	Class and User Data RepTile Temperature Distribution
Block Cylinder/Cone Torus Sphere Thin Sheet	Material Surface Surface Source Prescription Color
-Width	
V. 40 V. 9 7. 1	Source Flux 💌
A. 140 I. 10 L. 11	
Conton Position Pototion	Flux: 10 Watts Total 100
Center Tosicion Rocacion	
X: O X: O	Total U
Y 15 Y 0	
	Wave. (um) Weight Power (W)
Z: -5 Z: 0	0.5461 1 0
in Degrees	
Insert Modify	Angular Normal to Surface 🔻
	Suppress random rays (Requires Source Importance S
	Apply Calculate Power

Annly Properties

■ 建立检测表面

□ Insert/Primitive Solids得到如图参数Block

Insert Primitive Solids
Block Cylinder/Cone Torus Sphere Thin Sheet Width X: 50 Y: 20 Z: 1
Center Position X: 0 Y: 20 Z: 15 X: 0 X: 0 Y: 0 Z: 0 in Degrees
Insert Modify

设定光线追迹参数
 Analysis/Raytrace Options
 注意勾选Polarization参数

Raytrace Options	
Simulation & Output Options Wavelengths 	Advanced Thresholds
Radiometric Radiometric 💌	
♥ Importance Samplin∉ Aperture Diffrac [.] 1000000 Random Rays: 1	distance (per
Polarizatio Random Seed: 1	
	<u>S</u> et Defaults

■ 开始进行追迹计算

- 之后选择探测器元件靠近PBS的表面
- 选择菜单Analysis/Polarization Map显示探测器表 面的偏振状态

- 上面的各个步骤建立的PBS元件可以将不同偏振 状态的光波分离
- 为更有效的利用光能,需要接着将被分开的两个相互垂直的偏振光转换为同一偏振方向

- 在透射的P偏振位置加入1/2波长片
 - □选取PBS元件下半部分的表面
 - □ 在该表面的右键菜单中选择 Properties/Mueller Matrix
 - □ 注意Propagation Direction 与Up Direction的填写

Apply Properties
Importance Sampling Exit Surface Diffraction Raytrace Flag Class and User Data RepTile Temperature Distribution Material Surface Surface Source Prescription Color Mueller Matrix Gradient Taday Publ Societation
Component: Linear Halfwave Retard V 1 Fast Axis to X Axis: 0 or 90 deg V 2
Mueller Matrix 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -1.000000 0.0000000 0.0000000 0.0000000 -1.000000 -1.000000
Propagation Directic:Up Direction Faraday Type X: 0.0000000 X: 0.0000000 Y: 1.0000000 Y: 0.0000000 Z: 0.0000000 Z: 1.0000000 Delete Delete

- 再次进行光线追迹计算
- 查看探测器表面的偏振状态,可以看到下半部分的偏振状态已经与上半部分相同

- 用荧光粉使LED获得白光
- 四种白光 LED 技术
 - □ 蓝光 LED + 黄色荧光粉;
 - □ 蓝光 LED + 红绿双色荧光粉;
 - □ 紫外 LED + 红绿蓝三色荧光粉;
 - □ 蓝光 LED + 绿光 LED + 红蓝光 LED

原子光谱一荧光光谱

- 原子吸收能量发生跃迁后,原子以光辐射形式释放能量跃迁到较低能级,可形成荧光发射
- 非共振荧光: 荧光波长与激发光波长不同
 - □ 荧光波长比激发光波长长称为斯托克司线(Stokes)
 - □ 荧光波长比激发光波长短称为反斯托克司线(Anti-Stokes)

■ 设定波长及光源

 在设定荧光材料前追迹 并观察探测器表面光照度情况

🔲 Raytrace Op	otions			× [Apply
Simulatic Options	on & Output Wavele	ngths	Advanced Thresholds]	Importan Mueller
Type Di	screte wav	elengths	•		Te Materia
ection 0.	44	-	<u>A</u> dd <u>D</u> elete		
- Wavelengths					
Value (um)	Weight				
0.44	1				Wav
0.48	1				0.4
					0.4
					0.4
					10.4
					∏ s
		nolu I	Set Defeut		
		ibbià		≝ _	

🗖 Ар	ply P	roper	ties			
Importance Sampling Exit Surface Diffraction Raytrace Flag Mueller Matrix Gradient Index Bulk Scatter Temperature Class and User Data RepTile Temperature Distribution Fluorescence Material Surface Surface Source Source Flux Total 3000 Total 0						
	Wave.	(um)	Weight	Power	(₩)	~
	0.44		0.2	0		
	0.45 0.5		0			
	0.46 0.75		0			
	0.47		0.5	0		
	0.48		0.2	0		×
	Angular Lambertian					
Color: Suppress random rays (Requires Source Importance S Apply Salculate Power						

■ 建立荧光粉特性文档

IracePro E	xpert - [Fluoresco	ence Property Editor]			
<u> </u>	ew <u>D</u> efine <u>W</u> indow <u>H</u> elp				_ = ×
	Edit Property Data	Surface Properties Material Properties Z Bulk Scatter Properties Gradient Index Properties RepTile Properties			
a a 🖬 🔒 🧧		<u>F</u> luorescence Properties			
Catalog	Catalog: Fluorescence	Thin Film Stacks	•		
Add Catalog	Description: Spectra represer	nts conjugate prepared by coupling product to prote	ein ol		
Delete Catalog	Quantum efficiency: 0.75	Peak molar extinction: 92000 [lite	er/(mole*cm)]		
Add Property					
Copy Property	Temperature (K)	Excitation Wavelength (um)	Relative Absorption	Relative Excitation	
Data Points	300	0.4	0.4617754	0.4617754	
Sort by	300	0.401	0.44563	0.44563	
Add	300	0.402	0.4399702	0.4399702	
	300	0. 403	0. 4354483	0. 4354483	
	300	0.404	0.4369318	0.4369318	
	300	0.405	0.4431338	0.4431338	
	300	0.406	0.4564135	0.4564135	
	300	0.407	0.4703605	0.4703605	
	300	0.408	0.4913852	0.4913852	
	300	0.409	0.5166458	0.5166458	
	300	0.41	0.5394042	0.5394042	
	300	0. 411	0.5661007	0.5661007	
	300	0. 412	0.5942151	0.5942151	
<	Excitation Emission T	able	1		Сн 🖮 🛛 📜
View and modify flu	iorescence properties	X:-0.0445 Y:0.0570 Z:0.2596 millime	eters X:0.0000 Y:26.9149 Z:-	25.0737 millimeters	NUM

157

■ 蓝光波长激发黄光

■ 吸收量 = 激发量

荧光粉特性参数

- 1) Quantum Efficiency -----量子效率
 - $\square B=N_{Emission} / N_{Absorb}$
 - N_{Emission} 是荧光材料辐射出的量子数
 - N_{Absorb}是荧光材料吸收被刺激的量子数
- 2) Peak molar extinction -----峰值摩尔消光量
 单位: liter/(mole·cm)
 □吸收量为最大值"1"的摩尔系数
- 3) Molar Concentration-----摩尔浓度(mole/liter) 与峰值消光系数共同决定吸收曲线的实际峰值
- 4) Relative Absorption 相对吸收(normalized)
- 5) Relative Excitation 相对激发(normalized)
- 6) Fluorescence Emission 相对发射(normalized)

选择荧光模式

- 0~0.56um没有波长被激发
- 0.56~0.60um将平均激发2个波长
- 0.60-Infinite没有波长被激发

Raytrace Options	_ 🗆 🗙				
Simulation & Output	Advanced				
Options Wavelengths	Thresholds				
Radiometric Units: Radiometric 💌					
Ray Splitting					
🔲 Specular Rays Only					
Importance Sampling					
Aperture Diffraction 1000000	distance				
Random Rays: 1 (per					
-▼ Fluorescence □ Insert file source					
Immediately trace emission wavelengths					
☐ Polarization					
Detect Ray Starting in Bodies					
Random Seed: 1					
	<u>S</u> et Defaults				

Simulatio	on & Output		Advanced	
Options	Wavele	ngths	Threshol	.ds
Type FI	luorescence	emission w	avebands	•
election 0.	56	•	<u>A</u> dd <u>D</u> ei	lete
Wavelengths	,			_
From (um)	To (um)	Inc (um)	# Bands	
0	0.56		0	
0.56	0.6		2	
0.6	INF		0	
			-	
		R	efresh Disp	lay

Trace Ray

Total - CIE Color Map for Absorbed Flux Detecter Detecter

_

总	结
	- P - P

- 荧光激发的设定要素
 - □ 设定荧光材料的特性

Define>>Edit property data>>Fluorescence Properties

□ 设定荧光实体的激发参数 Define>>Apply properties>>Fluorescence

□ 描光设置中设置荧光激发

Analysis>>Raytrace Options >>Options>>Fluorescence

□ 设定激发波长

Analysis>>Raytrace Options>>Type>>wavelengths

□ 设定激发波段

Analysis>>Raytrace Options>>Type>>Fluorescence emission wavebands

总结

■ 荧光激发影响因素

- □ LED模型的准确性
- □荧光粉本身特性(吸收系数、消光系数等)
- □涂层厚度、掺杂浓度(摩尔浓度)
- □封装工艺,封装材料

