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Background

• The mathematical functions were 

originally described by Frits 

Zernike in 1934.

• They were developed to describe 

the diffracted wavefront in phase 

contrast imaging.

• Zernike won the 1953 Nobel 

Prize in Physics for developing 

Phase Contrast Microscopy.



Phase Contrast Microscopy

Transparent specimens leave the amplitude of the illumination

virtually unchanged, but introduces a change in phase.

http://upload.wikimedia.org/wikipedia/en/9/9c/Unstained_Epithelial_Cell.jpg
http://upload.wikimedia.org/wikipedia/en/9/9c/Unstained_Epithelial_Cell.jpg


Applications

• Optical Design – describing complex 

shapes such as freeform surfaces and 

fabrication errors. 

• Optical Testing - fitting reflected and 

transmitted wavefront data.



Surface Fitting

• Fitting a complex, non-rotationally symmetric surfaces (phase 

fronts) over a circular domain.

• Possible goals of fitting a surface:

– Exact fit to measured data points?

– Minimize “Error” between fit and data points?

– Extract Features from the data?



1D Curve Fitting
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Low-order Polynomial Fit

y = 9.9146x + 2.3839

R
2
 = 0.9383
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In this case, the error is the vertical distance between the line and

the data point.  The sum of the squares of the error is minimized.



High-order Polynomial Fit
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Fitting Issues

• Know your data.  Too many terms in the fit can be numerically 

unstable and/or fit noise in the data.  Too few terms may miss real 

trends in the surface.

• Typically want “nice” properties for the fitting function such as 

smooth surfaces with continuous derivatives. 

• Typically want to represent many data points with just a few terms 

of a fit.  This gives compression of the data, but leaves some 

residual error.  For example, the line fit represents 16 data points 

with two numbers: a slope and an intercept.



Why Zernikes?

• Zernike polynomials have nice mathematical properties.

– They are orthogonal over the continuous unit circle.

– All their derivatives are continuous.

– They efficiently represent common errors (e.g. coma, 

spherical aberration) seen in optics.

– They form a complete set, meaning that they can represent 

arbitrarily complex continuous surfaces given enough terms.



Orthogonality - Zernike

Orthogonality means we have an easy means of calculating 

expansion coefficients.
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Discrete Data

• Typically, we do not have a continuous description of 𝑊 , 

instead the data is discretely sampled (e.g. pixels on the digital 

sensor of an interferometer.

• In this case, we use matrix methods to find the expansion 

coefficients.  This method is the same technique that we would use 

for fitting non-orthogonal functions.

• So why use orthogonal function?



XY Polynomials

XY Polynomials

Most of the variation for the higher order terms 

occurs at the edges. 



Zernike Polynomials

The variation oscillates in the radial and azimuthal

direction.



Even Asphere

When the fitting functions 

have most of their change at 

the edge, then we need huge 

values of high order terms to 

represent small total sag.

Numerical precision becomes 

an issue here as small 

changes to coefficients can 

cause large changes in total 

sag.



Zernike Equivalent

When the fitting functions 

have most of their change at 

the edge, then we need huge 

values of high order terms to 

represent small total sag.

Numerical precision becomes 

an issue here as small 

changes to coefficients can 

cause large changes in total 

sag.



Standards
ANSI Z80.28-2010

ISO 14999-2:2005

ISO 24157:2008 Normalized

Unnormalized
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ANSI Z80.28/ISO 24157 Zernikes
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ANSI Z80.28/ISO 24157 Zernikes
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ANSI Z80.28/ISO 24157 Zernikes
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Wavefront Variance

• Wavefront variance and its square root RMS wavefront error are 

metrics of image quality.

• For the normalized Zernikes, the wavefront variance is trivial to 

calculate.

• Basically, the squared magnitude of each term describes its 

contribution to the variance.

• RMS Error is just square root of the variance.

𝜎𝑊
2 = 

𝑛≥1

𝑎𝑛𝑚
2 − 𝑎00



Wavefront Fitting

=

-0.003 x

+ 0.002 x

+ 0.001 x



Different Zernike Sets

“Standard” or Noll Zernike Fringe Zernike

The Fringe Zernike set is a subset of the Zernike 

polynomials.



Zernike Polynomials
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Caveats to the Definition of

Zernike Polynomials
• At least six different schemes exist for the Zernike polynomials.

• Some schemes only use a single index number instead of n and m.  

With the single number, there is no unique ordering or definition 

for the polynomials, so different orderings are used.

• Some schemes set the normalization to unity for all polynomials.

• Some schemes measure the polar angle in the clockwise direction 

from the y axis.

• The expansion coefficients depend on pupil size, so the maximum 

radius used must be given.

• Make sure which set is being given for a specific application.



Zernike Polynomials - Single Index

Azimuthal Frequency, q
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Other Single Index Schemes
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Other Single Index Schemes
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NON-STANDARD
Starts at 1

cosines are even terms

sines are odd terms

Normalized

Noll, RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am 66; 207-211 (1976).

Also Zemax “Standard Zernike Coefficients”



Other Single Index Schemes
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NON-STANDARD
Starts at 1

increases along diagonal

cosine terms first

35 terms plus two extra

spherical aberration terms.

No Normalization!!!

Zemax “Zernike Fringe Coefficients”

Code V Zernikes

Also, Air Force or University of Arizona



Other Single Index Schemes

• Born & Wolf

• Malacara

• Others??? Plus mixtures of non-normalized, coordinate systems.

NON-STANDARD

Use two indices n, m to unambiguously define polynomials.

Use a single standard index only if needed to avoid confusion.

Noll or Zemax “Standard” is closest to ANSI Z80.28/ISO 24157

Fringe set is closest to ISO 14999-2, but has limited terms.



Summary

• Zernike polynomials are a useful set of functions for representing 

surface form and wavefronts on circular domains.

• The normalized version of the Zernikes gives a direct quality 

metric in the form of variance.

• Many different schemes and definitions exists, so be careful when 

comparing results from different sources.

• Two-index scheme is always unambiguous. 
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