(160	📢 Op TaliX-Pro 5.63 C.\Program Files\Op TaliX-Pro\examples\Petzval\PETZVAL_PROJECTION.OTX												
File	List	Edit	Display	Geom.Analysis	Diffr.Analysis	Tools	Optimization	Glass Manag	er Coatings	Manufacturi	ing Windows	Help	
D	60 C		s 😭		5 🔊 🔌	1	FLD FRE	AR OPT AF	ZOO TOL BPR	RAY MHT	🔊 🖽 🕅	?	
Com	nmand	: [-			

3.1.1 功能表

功能表位於圖 3.3 顯示主選單的上方,每一個選單均有下拉式選項,若選項不支援則會以灰 色顯示。

- ◆ 檔案 (File) 開啓、儲存檔案。以及載入、輸出 Code V、Oslo、Zemax、Atmos、Modas 等軟體的透鏡設計檔。此外,還有偏好設定、歷史紀錄檔的快速存取也在檔案選單之中。
- ◆ **選項 (List)** 各種清單式輸出選項,例如透鏡配置 (lens prescription)、鍍膜 (coatings)、鏡 片材料 (glasses)、優化資料 (optimization data) 等。
- ◆ 編輯 (Edit) 提供編輯、插入、刪除或逆轉透鏡表面、變焦資料、Zernike 表面資料等選單。
- ◆ 顯示 (Display) 顯示透鏡設計圖及座標軸。
- ◆ 幾何分析 (Geom.Analysis) 以幾何式的特性分析,例如光點圖 (spot)、橫向像差光扇圖 (transverse ray aberrations, Fan)、散光(astigmatism)、畸變分析 (distortion) 等等。
- ◆ **繞射分析 (Diffr.Analysis)** 以繞射做為為基礎的計算分析,例如 MTF、PSF、波前像差 (wavefront aberration)、干涉分析 (interferogram) 等等。
- ◆ 工具 (Tool) 進階或特殊功能,包含自動聚焦 (autofocus)、透鏡規範轉換、簡易光學 (含 望遠鏡)系統解析解、使用者自訂圖、巨集等等。
- ◆ **優化 (optimization)** 設定與執行優化功能。
- ◆ 鏡片屬性管理器 (Glass Manager) 觀看內建鏡片材料的光學屬性,例如古典 n- ν 圖、局 部色散圖 (partial dispersion diagrams)、漸變式輪廓 (gradium profile) 等等。
- ◆ **鍍膜 (Coatings)** 提供編輯和優化包含反射、相位和透射等鍍膜屬性。
- ◆ 製造 (Manufacturing) 支援包含樣板測試擬合 (test-plate fitting)、非球狀圖 (aspherization plot) 等等。
- ◆ 說明 (Help) 啓動線上說明系統。

3.1.2 鍵盤熱鍵

一般除了使用滑鼠來開啓各項選單外,使用者也可以使用鍵盤的熱鍵來開啓常用的選單。 舉例來說,鍵入"Ctrl+S"可立即儲存光學設計檔。

需注意,假如是在指令列、對話框中或選定某分頁視窗中,則熱鍵功能將不會作用。

3.1.3 工具列

工具列提供了快速執行常使用到的一些功能,當把滑鼠移動到某一個圖示上,則立即顯示關於該圖示簡要的功能提示。

3.1.4 指令列

除了功能表的使用以外, OpTaliX 也能夠單在指令列上來執行,提供的兩個指令列中,一個 位在工具列下方,另一個位在文字視窗下方,如圖 3.4 和圖 3.5 所示。這兩個在功能上是完全一 樣的。各指令和詳細的語法都描述於參考手冊和線上說明系統。結合使用歷史記錄視窗和功能 表,可以方便的學習這些指令,因爲大部分的功能表使用歷程都會自動記錄在歷史紀錄視窗中。

正常來說是不需要將滑鼠游標移至指令列上來輸入指令,因爲軟體會自動偵測鍵盤輸入的 有效字元,並自動反應在文字視窗的指令列上。

輸入和改變資料是以自由格式指令語法來實現,此與 CODE-V 有點類似。所有指令的參數 必須至少以一個空白來隔開,大部分的指令都可以接受疑問提示(?)。

指令的參數可包含數值表示式,像是 THI s3 sqrt(2)+1。幾個指令可以給定在同一列上,但 須以分號 (;) 來隔開,而每一個指令列可容納 256 個字元。

大部分的指令接受如表面、像場、波長、變焦位置、光線、係數、瞳等等參數。可被認可 的參數如下表:

- si...j Surface range (surfaces i to j)
- fi...j Field range (field numbers i to j)
- wi...j Wavelength range (color numbers i to j)
- ri..j Ray range (ray number i to j)
- zi...j Zoom range (zoom position i to j)
- ci..j Coefficients (range i to j)
- pi...j Pupil (surface aperture) range i to j

舉例來說, s3..4 表示透境表面 3 到 4, 假如指令的輸入中沒有任何引數,預設值將會被使用上,一些指令有使用到配置對話視窗 (configuration)的設定,例如光點圖會使用到定義在配置檔內的像場與波長的值。

在下列的例子中,概要簡介一些指令的語法,當然需要更完整的說明或範例,還是需要參 考手冊,"!"右方代表對各項指令的說明,乃不屬於指令的一部份。

rdy s1 3 10.0	! 設定 1 到 3 表面的半徑為 10.0
yan f4 2.5	!設定像場2到4的角度為2.5度
psf f1	!計算像場1的繞射點擴散函數

📢 Text Window				
<u>F</u> ie <u>E</u> dit <u>S</u> earch				
				
# TYPE	RADIUS	DISTANCE	GLISS	-
1>5	28.7249	4.37333	BS 1124	1.6:
2 ສ	94.2300	0.14909		1.00
3 ន	17.4436	6.21211	SK1	1.6:
4.5	Infinity	1.88848	F15	1.60
5 ន	10.7346	7.55393		1.DC
STO S	Infinity	5.46060		1.DC
.7 S	-13.5175	1.88848	F15	1.60 🗾
1				F
Command thi sa	3 2*6.5			-

(圖 3.4) 文字視窗底下的指令列

W OpTX	-Pio	1.20						
Ele List	Edit	Display	Geom Andysis	Diffi.Analysis	Tools	Optimizat	ion	Glass Mana
DIB		3	iii 🔟 👿 🗅	s 🐟 📣 🔤	VAR	OPT AF	200	RAY MHT
Command	lis	psf f1: fa	n					-

(圖 3.5) 功能表與工具列底下的指令列

3.1.5 狀態列

狀態列是位在主視窗的底部,從左至右所包含的資訊如下:

Grid:	32 1001	reen JGRA: to screen JPUS: 17.1 JE:\opx4\Examples\Misc\DUUBLE_GAUSS.UTX	111
	Grid	光線格點用來對圖形表現效能的評量,光線是以穿過入口瞳的 N 乘 N 格 定義。N 值越高代表計算會越準確,然而計算的時間也相對較長,光線格 定義在配置檔(指令:EDI CNF;從功能表為 Edit>Configuration)	子點來 各點是
	OUT	省出文字和數據結果的輸出	
	GRA	指出圖形的輸出	
	POS	額示目前選擇的變焦/多表面配置位置	
	Path	展示目前該光學系統檔案的路徑和檔名	

第2節 圖形視窗

[_____

對於各類的圖形,其圖形視窗都可以任意調整大小與位置。

(圖 3.6) 圖形視窗

3.2.1 工具列

4

工具列與其圖形視窗息息相關,允許使用者執行一些選擇性的動作,像是列印、改變繪圖 參數、縮放、全視窗、輸出圖形檔或更新圖形視窗等。每一個圖示的具體意義如下:

列印圖形,也適用於網路印表機

^{*} 修改繪圖參數,例如繪圖比例、像差比例等等。對於每一種圖形視窗,使用此功能都會 開啓另一個的對話視窗

全視窗繪圖

圖形更新。例如透鏡設計資料已改變,也可參考 3.2.3 章節的說明

透過圖形視窗,也可以輸出圖形至其他檔案格式,提供者如下圖示所示:

CLP	複製圖形至剪貼簿上,詳細參考 3.3 章節
WMF	輸出圖形為視窗中繼檔 (Windows Metafile Format)
CGM	輸出圖形為電腦圖形中繼檔 (Computer Graphics Metafile format)
PNG	輸出圖形為可攜式網路圖形檔 (Portable Network Graphics format)
SVG	輸出圖形為可變向量繪圖檔檔 (Scalable Vector Graphics format)
PCX	輸出圖形為 PCX 檔 (Paintbrush format)
BMP	輸出圖形為 BMP 檔 (Windows bitmap format)
HPG	輸出圖形為 HPGL 檔 (Hewlett Packard Graphics Language format)
DXF	輸出圖形為 AutoCAD 圖檔 (Drawing Exchange Format)
EPS	輸出圖形為壓縮 PSF 檔 (Encapsulated PostScript format)

3.2.2 放大

整個圖形區域的比例可以藉由滑鼠左鍵選取拖曳的矩形框而放大,如圖 3.7。

(圖 3.7) 放大紅色區域

3.2.3 圖形更新

圖形視窗可依需要而自動更新,正常來說是不需要使用者手動更新。然而,繪製如有高計 算量的圖形(像是MTF、PSF),則必須要使用者需要而更新,否則程式反應將會變慢。

更新圖形的動作是透過圖形視窗左方工具列的更新鈕 🗘 來完成,或者在圖形視窗雙擊滑 鼠鍵來完成。

第3節 剪貼板的支援

視窗剪貼板支援文字與圖形形式,不論在文字輸出視窗或歷史紀錄視窗的文字都可以選取後而複製。使用的動作為點選欲複製區的左上角,握住滑鼠左鍵並拖曳至欲複製區的右下角, 釋放左鍵後按住鍵盤 Ctrl+C,將文字或圖形暫存於剪貼板中。

圖形也能以開啓圖形視窗的剪貼板來複製,方法是選擇功能表 Options>Copy to Clipboard,或點選圖示 CLP 來實現。

第4節 透鏡表面編輯器

透鏡表面編輯器是用來編輯透鏡表面參數的表格式對話視窗。從功能表 Edit>Surface Data, 或工具列圖示
,或在指令列輸入 EDI SUR 來開啓。如下,分別將表面參數的各重要欄位 加以說明:

標準資料 (Standard Data)	此表單包含大部分會使用到的資料,像是曲率半徑、厚度、透
	鏡材料、圓形孔徑、表面類型等等
離心,傾斜(Decenter,Tilts)	包含設定鏡片離心、傾斜表面的參數,特殊的傾斜模式也可以
	在這裡定義
非球面 (Asphere)	包含旋轉對稱非球面和環形表面的變形係數
梯度折射率 (GRIN)	提供對梯度折射率模型的定義,也包含隨折射率變化的離心、
	傾斜資料
求解 (Solves)	提供對近軸參數的直接控制,像是入射角、近軸光線角、光線
	高、等光程條件 (aplanatic) 的基本運算
特殊孔徑(Special Aperture)	特殊孔徑包含所有非圓形的孔徑。定義矩形、橢圓形和多邊形
	孔徑外型,也允許局部混合外型
全像圖(Hologram)	定義全像和光柵係數
雜項 (Misc)	雜項表面資料

📢 Sur	face Edito	r: C:\Program FilesV)p T	aliX-Pro'example:	Mis	x\DOUBLE_GAU	SS.C	TX							
Stand	lard Data	Decenter, Tilts A	sph	ere GRIN Sol	ves	Special Aperture	s I	Hologram I	Mis	c.					
TYPE Radius . Distance						GLASS		APE-Y	×	Shape		GIЬ	THR	-	Com
OBJ	S	0.0000000		0.1000000E+21				0.00	0	circular 💽	-	0	0.00000		
1	S	28.7248827		4.373329		BSM24	8	15.00	1	circular 🕒		0	0.00000		
2	S	94.2300334		0.1490908				14.60	0	circular 💽	-	0	0.00000	1	
3	S	17.4436362		6.212115		SK1		12.71	0	circular 💽	•	0	0.00000		
4	S	0.0000000		1.888483		F15		12.26	0	circular 💽		0	0.00000		
5	S	10.7346033		7.553932				8.48	0	circular 💽		0	0.00000		
STO	S	0.0000000		6.460600				7.74	0	circular 💽		0	0.00000		
7	S	-13.5174540		1.888483		F15		8.44	0	circular 📑		0	0.00000		
8	S	0.0000000		5.416964		SK16		10.45	0	circular 💽		0	0.00000		
9	S	-17.4933717		0.1490908				11.06	0	circular 🔄		0	0.00000		
10	S	293.370246		3.429087		SK16		11.94	0	circular 🔄		0	0.00000		
11	S	-31.5576071	_	31.52335				12.00	1	circular 💽	•	0	0.00000		
IMG	S	0.0000000		-0.4558400E-01				12.62	0	circular 🔄		0	0.00000		
• EFL	IMG S 0.0000000 -0.4558400E-01 12.62 0 0.000000 IMG S 0.0000000 -0.4558400E-01 12.62 0 0.000000														
Zoom	n Pos. 🗍			1	nser	t Surf. Insert Fi	ile	Delete Su	rf.				Help	Clo	e

(圖 3.8) 表面編輯器

透過滑鼠或鍵盤在表格單中導覽,滑鼠導覽是非常簡單:

- ◆ 點選一個視窗分頁
- ◆ 點選一個行或列標題,來選擇所有的行或列
- ◆ 可使用捲軸來移動任意表單的各行列

注意,表面編輯器對話視窗會佔用到到程式的大部分資源使用,假如幾個其他的應用程式同時執行,對於Windows 95/98/Me 這些操作系統,可能會導致此程式的執行問題,因此建議關掉其他的應用程式,當然在Windows NT/2000/XP 並不會影響到這方面的問題,這只關乎於可用的記憶體限制。

下面的章節,將對每一個分頁表單和欄位再加以詳述。

3.4.1 標準資料

Stand	lard Data	Decenter, Tilts A	Asphi	ere GRIN Sol	ves	Special Apertures	s	Hologram I	Mis	c.			
	TYPE	Radius		Distance		GLASS		APE-Y	×	Shape	GIb	THR	. Com_
OBJ	S	0.0000000		0.1000000E+21	1			0.00	0	circular 💌	0	0.00000	
STO	S	0.0000000		1.000000				2.50	0	circular 💌	0	0.00000	
2	A	2.88605600) v	3.500000		N-LAK9		3.00	0	circular 💌	0	0.00000	
3	S	-30.2682378	3 V	2.023989				3.00	0	circular 💌	0	0.00000	
IMG	S	0.0000000)	0.1703100E-02	V.			0.52	0	circular 💌	0	0.00000	

標準資料 (Standard Data) 分頁包含常用到的透鏡基本資料,像是曲率半徑、厚度、透鏡材料、孔徑等等,另外,對於較窄欄位(以"."點來表示)位於曲率半徑、厚度、材料等欄位的右邊。允許此表面可因需要而調整參數,如表面半徑、厚度、材料變數的優化或,表示特殊項目的解。可接受於欄位的代號功能有:

v 優化被指定的項目(單一位置變數)

z 優化被指定項目的變焦變數

integer number 表示對一個領前表面 (preceding surface) 的挑選。一個具負號的表面數代表有 相對的曲率或厚度距離

表示一個解

S

欄位標題有下列的意義:

類型	表明	明表面的類型。這是一個至多到四位元	的	字串,有些是必須要塡的,而有些是可											
(Type)	選切	真的,可參考下表。舉例來說,SDM 第	主義	一個圓形表面,其離心或傾斜,並為											
	1	固面鏡。													
		必要的表面類型	可選擇的表面類型												
	S	圓形表面	D	離心和(或)傾斜的表面											
	A	非球狀表面	M	平面鏡											

	L	透鏡模組(理想透鏡)	G	光閘 (Grating) 表面							
	X	非光線覓跡,只轉換表面座標而沒有	Н	全像表面							
		實際覓跡光線到該表面									
	U	使用者自訂表面	F	超薄型表面 (Fresnel)							
			Ι	漸變折射率							
			N	非序列式表面,必須與"D"組合使用							
			P	光導管、步階型光纖							
			R	一致表面單元陣列							
			Т	內部全反射 (TIR) 表面							
			Z	Zernike 表面							
			C	旋轉對稱曲線面變形							
	₩ 二維表面變形										
			E	純二維曲線非對稱(無基準面)							
半徑	曲率半徑。若曲率中心位在表面右邊則爲正,反之則負。這個規則與光的方向無關										
(Radius)											
距離	沿光軸的兩個連續表面的間隔。假如下一個表面位在目前表面的右邊則爲正,反之										
(Distance)	則反。順著一個平面鏡的距離也是負的										
	-7-7		• Gritte /	oho hoho \							
透鏡材料	八) 须	 里光學材料庫的名稱(圾堣、塑膠、液	憶	寺寺)							
(Glass)	127										
APE-Y	' ∓ †	1徑 (Semi-aperture) 丰徑									
*	木木	關位表示: 偶加—個表面孔 徑有納綸杏	:,	日本(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
	接受	受。前者,代表表面孔徑外的光線是被	· 注意	答。注意,孔徑光欄表面 (stop surface)							
	總督	會是一個被檢查的表面									
	, 1, G, F										
孔徑外型	孔征	堅外型既可爲圓形(預設)、橢圓形、約	拒形	或多邊形							
(Shape)											
Glb	全均	或參考座標 (Global Referencing),參考		長面至目前表面法線和領前表面的端點							
備註	對表	表面的註解									
(Comment)											
鍍膜	指定	定一個鍍膜檔案(最多八個字元)的,	附加	加至一個多層鍍膜於一表面上							
(Coating)											

3.4.2 離心,傾斜

所有需要定義離心和(或)傾斜表面的參數均可從本分頁視窗來輸入。額外的欄位(以"." 來表示)位於 XDE、YDE、ZDE、ADE、BDE、CDE 等欄位的右邊,"."欄位允許的輸入項目有:

- **v** 優化被指定的項目(單一位置變數)
- **z** 優化被指定項目的變焦變數

	THR	TLM	SEQ.	Pik	XDE		YDE	 ZDE	 ADE	 BDE 📥
OBJ	0.00000	DAR 💌	XYZABC	0	0.00000		0.00000	0.000000	0.000000	0.0(
STO	0.00000	DAR 💌	XYZABC	0	0.00000		0.000000	0.00000	0.000000	0.0(
2	0.00000	DAR 💌	XYZABC	0	0.00000	Τ	0.000000	0.000000	0.000000	0.0(
3	0.00000	DAR 💌	XYZABC	0	0.00000		0.000000	0.000000	0.000000	0.0(
IMG	0.00000	DAR 💌	XYZABC	0	0.000000	Τ	0.00000	0.000000	0.000000	0.0(

THR	參考厚度。此爲參考主一領前表面的表面軸間隔(厚度)。不像法線厚度,一參考厚度
	總在表面之前定義
TLM	傾斜模式。定義隨後表面的座標系統,計有:
	◆ DAR - 離心和回復。任一衣囬傾科/離心俊,座標系統回復為光學軸,如此,光學
	軸不被改變
	▲ NAX-新軸。加名,日前表面注線完義所有隨後表面的新軸
	◆ BEN - 彎曲表面。光學軸依循反射定律,只能在與半面鏡結合時才使用
SEO	佰到順序。此描述佰到/離心的順序, 字母 X、V 和 Z 表示離心, 字母 A、B 和 C 分別
SEQ	
	表示對 X 軸、Y 軸和 Z 軸來傾斜。因此,字串 XYZABC 表示表面依序在 X 離心、Y
	離心、Z 離心、對 X 軸旋轉、對 Y 軸旋轉、對 Z 軸旋轉的座標轉換
Pik	表示對領前表面的挑選爲傾斜
WDE	
ADE	
YDE	Y 離心。
IDL	
ZDE	Z 離心

ADE	對 X 軸的傾斜角 (α 傾斜)
BDE	對 Y 軸的傾斜角(β傾斜)
CDE	對 Z 軸的傾斜角(γ 傾斜)

3.4.3 非球面

非球面表面的參數是位於第三個分頁選單上。非球面是以多項式函數來描述,其對局部 Z 軸旋轉。該定義包含圓錐形表面(拋物面、橢圓面、雙曲面)和環面。額外的欄位(以"."來表 示)位於A、B、C、D、E、F、G、H等欄位的右邊,"."欄位可接受的輸入項目有:

v 優化被指定的項目(單一位置變數)

z 優化被指定項目的變焦變數

	Asph.Type	Pik	K (Conic Const.)		A		В		С		D	 E
OBJ	even, 18th 💌		0.000000		0.000000		0.000000		0.0000000		0.000000	0.0000
STO	even, 18th 💌		0.000000		0.000000		0.000000		0.000000		0.000000	0.0000
2	even, 18th 💌		-0.75283105	۷	0.91574904E-03	۷	0.28326262E-04	۷	-0.80266303E-05	۷	0.000000	0.0000
3	even, 18th 💌		0.000000		0.000000		0.000000		0.000000		0.000000	0.0000
IMG	even, 18th 💌		0.000000		0.000000		0.000000		0.000000		0.0000000	0.0000

Asph.Type	選擇較高階係數的定義。可翻閱參考手冊關於"odd"和"even"多項式係數的的 詳述
Κ	 圓錐常數 K 描述圓錐區段的表面: -1 < K < -1 雙曲面 -1 < K = -1 抛物面 -1 < K < 0 橢圓長軸 -1 < K > 0 橢圓短軸 -1 < K = 0 圓
A,B,C,D,R,F,G,H	高階多項式係數
RDX	X/Z 平面的半徑。假如該向非零,則表面爲環形(在X和Y方向有不同的曲率)

3.4.4 梯度折射率

梯度折射率 (GRIN) 屬性。雖然基本上是描述著材料屬性,但這些資料仍可設定在表面上。

	GRIN-TYPE		GRIN-TYPE		Step	Z-Offset	GXDE	GYDE	GZDE	GADE	GBDE	GCDE	Coeff.	M>_
OBJ	URN	•	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0		
STO	URN	•	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0		
2	URN	•	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0		
3	URN	•	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0		
IMG	URN	-	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0		

GRIN-Type	梯度折射率類型 (GRIN-Type) 描述折射率輪廓所構成的方程式,有下列的屬性可用:
	 URN - 羅撤斯特大學梯度。軸向與徑向混合的梯度 SEL - 從 NSG 公司發展的 SelfocTM梯度 LPT - 從 LightPath 發展的 GradiumTM梯度軸向輪廓 AXG - 軸向梯度 LUN - Luneberg 梯度 SPG - 球面梯度 MAX - 馬可仕威爾魚眼 GLX - GLC 開發的軸向梯度
Step	光線覓跡過程中,沿著光學路徑對步階長做積分。步階越小,結果將越準確,然而,也會越耗電腦資源
Z-Offset	定義表面端點 wrt. 輪廓的位置。只有軸向梯度 (LPT) 才需要用到
GXDE	梯度折射率輪廓 wrt. 目前表面端點的 X 離心
GYDE	梯度折射率輪廓 wrt. 目前表面端點的 Y 離心
GZDE	梯度折射率輪廓 wrt. 目前表面端點的 Z 離心
GADE	梯度折射率輪廓對目前表面 X 軸的傾斜

GBDE	梯度折射率輪廓對目前表面 Y 軸的傾斜
GCDE	梯度折射率輪廓對目前表面 Z 軸的傾斜
Coeff.	開啓對話框來編輯使用者自訂的 GRIN 係數。本選項只當表面為 GRIN、透鏡材 質為"GRIN"、梯度折射率輪廓類型 (GIT) 為 URN、LPT 或 UDG 時才能選用
MXG	最大疊代數。當最大設定數達到,將終止孔徑光欄光線的疊代。輸入"MXG 0"來 關閉限制查核。注意 MXG 0 將不會設定疊代數至無窮大,而將孔徑光欄光線內 部疊代在 5000 步階之後,以避免無窮迴圈。因此,假如需要超過 5000 次疊代, 則必須隱式設定,舉例來說,MXG 20000

3.4.5 求解

定義求解參數。求解允許對近軸屬性的直接控制,舉例來說,指定求解的條件中,可以保 持某近軸光線角度,保持近軸光線高度、或某一近軸光線入射角為一特定值。求解就是要滿足 所給定的這些需求。

	Solve-Type	Param, 1	Param, 2	Solve-Type	Param, 1	Param, 2
OBJ	none 🔽	0.0000	0.0000	none 💌	0.0000	0.0000
STO	none 💌	0.0000	0.0000	none 💌	0.0000	0.0000
2	none 💌	0.0000	0.0000	none 💌	0.0000	0.0000
3	none 💌	0.0000	0.0000	none 💌	0.0000	0.0000
IMG	none 🔽	0.0000	0.0000	none 💌	0.0000	0.0000

Solve-type	求解類型 (solve-type) 定義哪一種近軸需求被滿足。可用的類型是光線角、 光線高度、入射角、等光程 (aplantic)和邊厚度。有兩種求解類型可以被套用 在一表面上
Param.1	第一參數,其依據求解類型。欄位標題將隨被選擇的求解類型來更新,以輔 助使用者能夠輸入正確的數值
Param.2	第二參數,只在邊厚度計算時才需要使用。其指定某邊厚度所需維持的軸高

3.4.6 特殊孔徑

特殊孔徑是指所有非圓形的孔徑,可定義表面上至多十個基本孔徑外型(矩形、橢圓形、 圓形和多邊形),這些基本孔徑外型可以透過邏輯運算因子 OR 和 AND 來混合。

每一個孔徑元素都可以被穿透或阻礙,每一個孔徑也可以從該表面端點做 X 和 Y 方向的離心,並可旋轉。

(圖 3.9) 編輯特殊孔徑。一個分離的視窗可用來定義多邊形孔徑的各端點

如圖 3.9 所示,在特殊孔徑對話視窗中,從下拉式選單中選擇表面至視窗做左邊,對於此透鏡表面的該孔徑資料將立即同步更新,至少需要一個基本孔徑,通常圓形是最常用的基本孔徑。

基本孔徑必須建構來包含於光線覓跡過程中。檢查在"On"欄位中的核取方塊,如果表面上 有超過一個基本孔徑,則孔徑資料必須連續地輸入在表面中。

編輯多邊形孔徑,首先在"外型 (Shape)"欄位中選擇"多邊形 (polygon)",在視窗最右邊欄位的"多邊形 (polygon)"按鈕則可以點選,點選後就可進入多邊形孔徑編輯視窗。

3.4.7 繞射元件

通常, 繞射元件表面 (Hologram) 也可表示為繞射表面 (diffractive surfaces), 一繞射表面的 光學屬性是依據在一光線交叉點可被看見的有效光柵間距上的繞射。*OpTtaliX* 在處理一光柵是 以一繞射表面的特殊案例。

cellicients for Hold le drop down list to specified	ogram or Lirating surf othe right. Make su	ace. Select the surfa te that surface type 6	a or H	8 T	- Uther notogram pa Design W-aveleng	th 0.5870
0 00001					Dilitaction order	1
HC2 h ^{^1}	HC3 h ²				C. Linner Cratics	-
0.00000	-1.10800				C C near craing	
HE4 h^3	HC5 h^4	HE6 h^5			• Symmetric H	ologram
0.0000	0.238060E-02	0.00000			C Asymmetric H	lologram
HE7 h°6	HCB h77	HC9 h78	HC10 h19		C 2-point Holog	rem
-0.618484E-05	0.00000	-0.156758E-07	0.00000		C VLS Grating	
HC11 h~10	HC12 h ² 11	HC13 h^12	HC14 h^13	HC15 h^14		
0.00000	0.00000	0.00000	0.0000	0.00000		
HC16 h~15	HC17 h^16	HC18 h^17	HC19 h118	HC20 h~19	HC21 h^20	
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
HE22 h^21	HC23 h ²²	HC24 h^23	HC25 h*24	HC26 h*25	HC27 h^28	HC28 h ² 7
0.00000	0.00000	0.00000	0.00000	0.00000	0.000000	0.00000
HX1	HY1	HZ1	HX2	Hh2	HZ2	
0.00000	0.0000.0	0.00000	0.00003	0.00000	8.00000	

(圖 3.10) 編輯全像係數

繞射表面具高度分散性, OpTaliX 提供幾種繞射(全像)表面:

- ◆ 線性光柵 (Linear grating)
- ◆ 可變線性間距光柵 (VLS)
- ◆ 光學全像,由雙光束干涉所形成
- ◆ 電腦產生的繞射表面 (CGH),以使用者指定軸向對稱相位分佈
- ◆ 電腦產生的繞射表面 (CGH),以使用者指定非對稱二維相位分佈
- ◆ 使用非常高折射率的"Sweatt"模型

繞射類型可在對話視窗的右半區來選定,每一個繞射表面需要設計波長和繞射階數的指定。 需注意繞射繞射係數描述著波前的相位改變,一階微分是在繞射元件表面上的光柵常數,對於 線性光柵,一階微分是一個常數,因此,在特殊案例中,光柵常數是與繞射係數相一致,這使 得定義光柵變得更容易些。

第5節 新光學系統的建立

我們的第一個和相對簡單的案例是消色差雙透鏡 (Achromatic Doublet),這需要透鏡表面資料的輸入,也就是透鏡設計資料。典型的設計資料除了透鏡外,還有孔徑、視景和波長。本案例之雙透鏡將有 200mm 的焦距長,30mm 的直徑,和 ±1 度的視景,而物體 (object) 假設為無窮長。

(圖 3.11) 消色差雙透鏡

本案例將提供兩種形式來達成模擬,第一個是使用視窗功能表,接著是單純使用指令列。

3.5.1 由功能表輸入

- 我們現在將建立一個新的透鏡,因此,需刪去先前系統的所有設計資料,我們可以從功能表 File>New 或點選工具箱圖示 來達成這個目的。
- 2. 輸入透鏡表面資料。選擇功能表 Edit>Surface Data 或點選工具箱圖示 來開啓表面編輯器,開啓後表單包含三行,相當於物體光源標籤 OBJ、孔徑光欄表面標籤 STO 和成像表面標籤 IMG。

Stand	ard Data	Decenter, Tilts A	sph	ere GRIN Sol	ves	Special Aperture	es	Hologram 🖡 1	Mis	c.			
	TYPE	Radius		Distance		GLASS		APE-Y	×.	Shape	GЊ	THR	Com
OBJ	S	0.0000000		0.1000000E+21				0.00	0	circular 💌	0	0.00000	
STO	S	0.0000000		0.000000				1.00	0	circular 💌	0	0.00000	
IMG	S	0.0000000		0.000000				0.00	0	circular 💌	0	0.00000	

對於雙透鏡系統,必須要有六個表面,其中四個為折射表面,另兩個為物體光源和成像表面。在本案例中,我們選擇第一個光學表面做為孔徑光欄表面,因此還有三個表面必須加入到系統中,我們移動游標至第三行(標籤為IMG),並點選表單下方的"Insert Surf"共三

次來插入三個表面。

 對於最基本的輸入參數,曲率半徑、軸向間隔距離和透鏡材料必須輸入,目前我們保留表 面孔徑在 APE-Y 的欄位為零,因為這將會在稍後自動計算,因此表面編輯表單現在看起來 如下圖所示:

Standard Data		Decenter, Tilts 🛛 A	Asphe	ere GRIN I :	Solves	Special Aperture	s	Hologram 🖡	c.				
	TYPE	Radius .		Distance .		GLASS		APE-Y	×.	Shape		GIb	THR
OBJ	S	0.0000000)	0.1000000E+	21			0.00	0	circular	•	0	0.00000
STO	S	119.165344	1	5.0000	00	BK7		1.00	0	circular	•	0	0.00000
2	S	-137.186171		1.5000	00			0.00	0	circular	•	0	0.00000
3	S	-121.758259	9	3.0000	00	SF6		0.00	0	circular	•	0	0.00000
4	S	-230.856734	1	0.0000	00			0.00	0	circular	•	0	0.00000
IMG	S	0.0000000)	0.0000	00			0.00	0	circular	•	0	0.00000

- 5. 我們也希望調整定義在表面 4 最後距離的焦距面位置,這個距離總是以最後表面至成像表面的間隔距離,這也可以依據近軸影像 (paraxial image, PIM) 來自動的調整,可自行參考圖 3.8 的下半區說明,假如 PIM 被勾選,則成像表面會自動移動至近軸影像的位置上。因此,最後距離也將改變於表面參數的修改上(半徑、距離、透鏡材料等),假如 PIM 沒被勾選,成像表面至最後表面的間隔將會被自動更新,因此,表面編輯器上的最後距離將不會改變,使用者可自行衡量放置影像位置至適當的位置上。
- 6. 我們將在透鏡設計對話窗中定義操作環境條件。開啓功能表 Edit>Configuration data, 或點

選工具箱圖示 🥸 ,此視窗包含幾個分頁標籤。

7. "孔徑 (Aperture)" 分頁視窗提供幾個定義孔徑的方法,我們點選"入口孔徑(Entrance aperture, EPD)"選擇鈕,並在數值欄位上輸入想要的數值 30.0mm,注意,孔徑光欄表面是 在第四個表面上,不是我們想要的位置上,雖然這不怎麼影響影像屬性,因爲雙透鏡只使 用在靠近光軸處,但我們也可以適當地設定孔徑光欄表面,在這裡,我們設定孔徑光欄表 面為1,所以其他的設定保持不變。

Aperture is defined by Entrance Aperture (EPD) Image F-Number (FNO) Image Num.Aperture (NA) Object Num.Aperture (NAO) Stop surface semi-diameter Aperture value 30.00000 Stop Surface 1	Apodization Intensity (PUI) 1.0000 at Radius X (PUX) 1.0000 at Radius Y (PUY) 1.0000 Ray Aiming to paraxial entrance pupil to real stop surface
}ay Grid Size 32 x 32 ▼	

 在"Field"分頁視窗中指定視場,我們分配最大視景±1度為三個視角0、0.5和1度。注意, 輸入的值總是以從X和Y上的光軸量測的半視角。我們輸入視角(3)的這些值在"FieldY"欄 位的視角,因為物體是在無窮遠處,只有視角資料是以物體角的定義才有意義,這保留為 預設,無須進一步的改變。

Opt	ical Sy	vstem Configurat	tion					
Ap	erture	Fields Way	elengths Gen	eral Asti	gmatic Ob	ject		
	No. o	f Fields	3 +					
		FieldX	Field Y	Weight	Active	Color		- Field Definition
	1	0.0000	0.0000	100	V			Object Angle
	2	0.0000	0.5000	100	V			C Object Height
	3	0.0000	1.0000	100	V			
	4	0.0000	0.0000	0				C Image Height
	5	0.0000	0.0000	0]	
	6	0.0000	0.0000	0				
	7	0.0000	0.0000	0				
	8	0.0000	0.0000	0				
	9	0.0000	0.0000	0				
	10	0.0000	0.0000	0				
	11	0.0000	0.0000	0				
	12	0.0000	0.0000	0			-	

9. 在"Wavelengths"分頁視窗上定義波長 546nm,請注意所有在 OpTaliX 定義的波長都是以 microns 來指定,因此 546nm 的波長需輸入為 0.546。我們還將加入另兩個波長,450nm 和 650nm,使其有三個近似於可見光譜範圍內的波長,其波長數值必須增加於於清單上,參 考波長是當近軸特性被計算時的波長,權重介於 0 至 100 的整數,用以模擬一相對光譜分 佈,且權重的絕對值是不重要的,對所有波長輸入 1 的結果是導致一均勻平坦的光譜分佈。

Optical Sy	stem Configurati	on		
Aperture	Fields Wave	elengths	General A	stigmatic Object
No. c	of Wavelengths	3	i i	
	Wavelength	Weight	REF	Select Optical Spectrum (OSP)
1	0.546000	1		
2	0.450000	1	C 2	
3	0.650000	ħ	C 3	
4			C 4	
5			C 5	
6			C 6	
7			C 7	0.450 0.550 0.6
8			C 8	User defined
9			O 9	
10			C 10	< Set Save as Delete
11			O 11	

10. 所有必須輸入的操作參數已經定義完成,我們將關閉透鏡設計對話視窗。對於光學系統的 輸入,我們可以列印透鏡描述來檢查是否近軸資料是如預期。選擇功能表 List>Surfaces,

或點選工具箱圖示 • 輸入的結果如下:

🃢 Text Window			_				
<u>File Edit Search</u>	h Clear						
FILE = new	_lens.otx				28.Ja	an.2005	16
Wavelength	: 0.546	500 0.4500	0.650	00			
Weight	:	1	1	1			
REF = 1							
XAN	0.00000	0.00000	0.00000				
YAN	0.00000	0.50000	1.00000				
FWGT	100	100	100				
FACT	1	1	1				
PIM = yes							
SYM = yes							
EPD = 30.0	0000						
# TYPE	RADIUS	DISTANCE	GLASS	INDEX	APE-Y AN	P CP DP	TP MP
OBJ>S	Infinity	0.10000E+21		1.000000	0.00 0	C O O	0 0 -1
I I I	110 1652	E 00000	ריזס	1 510772	15 00 /		
Command							-

- 11. 如預期,焦距長 (EFL) 為 200mm,剩下還需定義的參數是表面 2-5 的表面孔徑,我們現在 可讓系統自行計算這些值,選項 MHT 將決定最大需要表面高度,請開啓功能表 Tools>Set maximum,或點選工具箱圖示來完成。
- 12. 最後一步,我們將繪製透鏡設計圖,請開啓功能表 Display>Lens Draw Y,結果應會如圖 3.11 所示。

3.5.2 由指令列輸入

本章節重複先前案例,但將使用指令列的方式來進行,驚嘆號"!"後面的文字僅為註解,不 屬於指令的一部份。

Len !建立一新系統,所有之前的資料將被刪除

ins s1..4 ! 在最後一個表面前插入四個表面

我們現在將輸入透鏡表面資料,例如曲率半徑、厚度和透鏡材料

rdy s1 119.1653 ! 設定表面 1 的曲率半徑

!表面1之後的厚度 thi s1 5

gla s1 bk7 !表面 1 透鏡材料是 Schott BK7

對表面 2-4 重複資料的輸入

rdy s2 -137.1862

thi s2 1.5

!在表面2後的介質為空氣,因為新系統採用了預設値,此指令可以忽略 gla s2 rdy s3 -121.7583

thi s3 3

gla s3 sf6

rdy s4 -230.8567

我們現在定義系統在	1徑、視景和波長
epd 30	!設定入口孔徑半徑
yan 0 0.5 1	!定義三個視角為0、0.5和1度
wl 0.546 0.45 0.65	!定義三個波長
ref 1	!參考波長為1
set mht	!根據指定的孔徑與視點,設定最大所需表面高度
透鏡設計圖現在將袖	皮繪出
vie	!繪製一光學系統在 Y/Z 平面的剖面視圖

vie

第4章 案例介紹

第1節 傾斜表面案例

在本案例中,我們要學習如何設計傾斜和離心透鏡表面,我們使用現有雙高斯設計範例 (Double-Gauss),此案例存在於目錄 example\misc\double_gauss.otx。我們將插入一 45 度旋轉面 鏡 (fold mirror) 於最末透鏡表面和成像表面之間,下面的圖檔顯示預計的結果。

(圖 4.1) 具旋轉面鏡的雙高斯設計

4.1.1 由功能表輸入

開啓功能表 File>Open, 瀏覽資料夾的 misc 子目錄, 點選並開啓檔案 double_gauss.tox。接

著,選擇功能表 Edit>Surface data 或直接點選工具列圖示 📴。

此光學系統由12個包含物件表面和成像表面所組成,在最末(折射)表面之後將插入額外的旋轉面鏡表面。所謂插入表面是指實際表面之前,那就是說在我們的案例中,插入一成像表面之前,因此,在表面編輯器中,我們將移動游標至成像表面欄位上,即表單中的最後一表面12,此表面也以"IMG"來標著,接著點選"Insert Surf"鈕來插入表面,也就是我們稍後將修改的表面。

現在,此光學系統將有13個表面,表面12的一些屬性必須改變使其變為一傾斜面鏡。首先,此表面的表面類型需要修改,在"TYPE"欄位上顯示為"S",表示為一球面,這肯定是正確的,因為面鏡是為平面 (plano,曲率半徑無窮大),然而,我們必須在此表面上指定反射與傾斜/離心屬性,因此需修改表面類型為"SDM",其額外的字元"D"和"M"描述為:

- ◆ D: 傾斜/離心
- ◆ M: 面鏡

我們現在要設定傾斜和面鏡表面位置參數。在透鏡表面編輯器中,選擇 "Decenter,Tilts"分 頁標籤,接著改變表面 12 的"TLM"傾斜模式欄位從"DAR"變為"BEN"。

傾斜模式敘述表面的傾斜和(或)離心如何被處理,由"BEN"模式根據反射定律,在面鏡 表面的光軸偏斜,因此這不需要去改變所有隨後表面的位置(本案例中,即為成像表面),因為 這已經在折彎模式 (BEN) 完成了。

最後,我們對表面 12 的"ADE"欄位上,輸入傾斜角,"ADE"是對 X 軸的傾斜,其單位是角度,其正負號代表如下:

- ◆ 正號:傾斜是逆時針方向
- ◆ 負號:傾斜是順時針方向

-45 度角將表示傾斜表面順時針方向,並在面鏡反射後折彎光束向上。最後一步,我們改變在"Standard data"分頁視窗中,改變表面 11 的軸距為 10mm,這是為了讓旋轉面鏡位於最後透鏡 表面與成像表面的中間,產生的透鏡設計圖 (VIE 指令)將如圖 4.1 所示。

4.1.2 由指令列輸入

同上一章節的雙高斯設計案例,在最後一透鏡表面與成像表面間插入一旋轉面鏡:

- ins s12 在表面 12 (成像表面)之前插入一表面。而成像表面的代號增加為 13
- sut s12 SDM 表面 12 的表面類型為球面 (S)、離心 (D)和面鏡 (M)
- ben s12 改變傾斜模式為 BENd (面鏡的光軸遵守反射定律)
- *ade s12 –45* 傾斜角(對X軸)為45度,注意正負號,正號為逆時針,負號為順時針
- thi s11 10 改變表面 11 的軸向厚度為 10mm
- vie 顯示二維 Y/Z 平面的設計圖

第2節 非球面表面案例

本案例證明非球面表面如何用來改善透鏡的成像品質。做爲開始設計初段,我們也是從資料夾開啓一個現有的單一透鏡來著手,檔案存放位置爲 examples\tutorial\BestformLens.otx ,顯

示的結果如圖 4.2,此顯示出一明顯的球面像差,可透過像差光扇圖或光點圖來觀察(點選 🎴

或 🐨; 或是在指令列中輸入指令 'fan' 或 'spo')。我們的目標是對第一表面引入非球面變形 (aspheric deformation) 來減少球面像差,非球面表面需要的透鏡表面類型為取代預設透鏡表面類型"S"的"A",因為表面只能是球面 (S) 否則是非球面 (A)。

(圖 4.2) 非球面化一透鏡

4.2.1 由功能表輸入

在表面透鏡編輯器中,我們在表面1的透鏡表面類型的欄位上以"A"取代"S",注意,表面1 也是孔徑光欄表面,因此標籤名稱為'STO'。

為了簡化,我們只使用二次曲線,有拋物線、橢圓、雙曲線。在透鏡表面編輯器中的"Aspheric" 分頁視窗中,二次曲線常數 K=-0.7106137 必須輸入於表面1(第二列)的"K"標籤欄位上,如 圖 4.3。

📢 Sur	Surface Editor: C.\Program Files\OpTaliX-Pro\examples\Tutorial\BESTFORMLENS.OTX										
Stand	lard Data Deci	enter,	Tilts Asphere	GRIN	V Solves Specia	Apertures Hologr	am	Misc.			
	Asph.Type	Pik	K (Conic Const	.)	A	. В		C	. D		E
OBJ	even, 18th 🔻		0.00000	00	0.0000000	0.0000000		0.0000000	0.0000000		0.000(
STO	even, 18th 💌		-0.7106133	70	0.0000000	0.0000000		0.0000000	0.0000000		0.000(
2	even, 18th 💌		0.00000	00	0.000000	0.0000000		0.000000	0.000000		0.000(
IMG	even, 18th 💌		0.000000	00	0.0000000	0.0000000	100	0.0000000	0.0000000		0.000(

(圖 4.3) 輸入二次曲線常數

重複光點與光扇像差圖顯示出像差已經減少到幾乎看不出來了。點選圖形視窗圖示 🛣 來 改變像差的繪圖刻度,並輸入 0.001 (mm) 於隨後開啓的視窗,來觀看殘留像差 (residual aberration)。

較高階的非球面項可以被導入以消去微小的球面像差。這些係數以字母字元A到F,分別 出現在相對應的欄位上,如圖4.4所示,輸入前三個係數A至C: